Abstract
Genic variation was surveyed for 20 proteins of Drosophila melanogaster and 18 proteins of D. pseudoobscura. Analysis was by extraction and one-dimensional polyacrylamide gel electrophoresis under nondenaturing conditions, followed by staining with Coomassie Brilliant Blue to detect soluble proteins present in relatively large amounts ("abundant soluble proteins"). D. melanogaster was polymorphic for 65% of its protein loci and an individual was heterozygous for 10% of its loci. The respective figures for D. pseudoobscura were 61% and 11%. These estimates of genic variation fall between previously published estimates obtained for these species by one-dimensional electrophoresis of soluble enzymes and those obtained by two-dimensional electrophoresis of solubilized abundant proteins. However, variation for both species could be strongly partitioned between loci, on the basis of tissue and stage expression of the proteins. The results are discussed with respect to their bearing on the possibility that abundant proteins constitute a distinct class of proteins less polymorphic than soluble enzymes.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akam M. E., Roberts D. B., Richards G. P., Ashburner M. Drosophila: the genetics of two major larval proteins. Cell. 1978 Feb;13(2):215–225. doi: 10.1016/0092-8674(78)90190-3. [DOI] [PubMed] [Google Scholar]
- Edwards Y., Hopkinson D. A. Are abundant proteins less variable? Nature. 1980 Apr 10;284(5756):511–512. doi: 10.1038/284511a0. [DOI] [PubMed] [Google Scholar]
- Gillespie J. H., Kojima K. The degree of polymorphisms in enzymes involved in energy production compared to that in nonspecific enzymes in two Drosophila ananassae populations. Proc Natl Acad Sci U S A. 1968 Oct;61(2):582–585. doi: 10.1073/pnas.61.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillespie J. H., Langley C. H. A general model to account for enzyme variation in natural populations. Genetics. 1974 Apr;76(4):837–848. doi: 10.1093/genetics/76.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris H., Hopkinson D. A., Edwards Y. H. Polymorphism and the subunit structure of enzymes: a contribution to the neutralist-selectionist controversy. Proc Natl Acad Sci U S A. 1977 Feb;74(2):698–701. doi: 10.1073/pnas.74.2.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson G. B. Enzyme polymorphism and metabolism. Science. 1974 Apr 5;184(4132):28–37. doi: 10.1126/science.184.4132.28. [DOI] [PubMed] [Google Scholar]
- Juneja R. K., Reetz I., Christensen K., Gahne B., Andresen E. Two-dimensional gel electrophoresis of dog plasma proteins: genetic polymorphism of an alpha 1-protease inhibitor and another postalbumin. Hereditas. 1981;95(2):225–233. doi: 10.1111/j.1601-5223.1981.tb01411.x. [DOI] [PubMed] [Google Scholar]
- Kojima K., Gillespie J., Toari Y. N. A profile of Drosophila species' enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities, and linkage disequilibrium in glucose-metabolizing systems and some other enzymes. Biochem Genet. 1970 Oct;4(5):627–637. doi: 10.1007/BF00486100. [DOI] [PubMed] [Google Scholar]
- McConkey E. H., Taylor B. J., Phan D. Human heterozygosity: a new estimate. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6500–6504. doi: 10.1073/pnas.76.12.6500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmour R. M., Cronin J. E., Childs A., Grunbaum B. W. Studies of primate protein variation and evolution: microelectrophoretic detection. Biochem Genet. 1980 Aug;18(7-8):793–808. doi: 10.1007/BF00484594. [DOI] [PubMed] [Google Scholar]
- Racine R. R., Langley C. H. Genetic heterozygosity in a natural population of Mus musculus assessed using two-dimensional electrophoresis. Nature. 1980 Feb 28;283(5750):855–857. doi: 10.1038/283855a0. [DOI] [PubMed] [Google Scholar]
- Ramshaw J. A., Coyne J. A., Lewontin R. C. The sensitivity of gel electrophoresis as a detector of genetic variation. Genetics. 1979 Dec;93(4):1019–1037. doi: 10.1093/genetics/93.4.1019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts D. B., Evans-Roberts S. The genetic and cytogenetic localization of the three structural genes coding for the major protein of drosophila larval serum. Genetics. 1979 Nov;93(3):663–679. doi: 10.1093/genetics/93.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts D. B., Wolfe J., Akam M. E. The developmental profiles of two major haemolymph proteins from Drosophila melanogaster. J Insect Physiol. 1977;23(7):871–878. doi: 10.1016/0022-1910(77)90013-0. [DOI] [PubMed] [Google Scholar]
- Singh R. S., Hickey D. A., David J. Genetic Differentiation between Geographically Distant Populations of DROSOPHILA MELANOGASTER. Genetics. 1982 Jun;101(2):235–256. doi: 10.1093/genetics/101.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith S. C., Racine R. R., Langley C. H. Lack of genic variation in the abundant proteins of human kidney. Genetics. 1980 Dec;96(4):967–974. doi: 10.1093/genetics/96.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg R. A., O'Farrell P. H., Friedrich U., Coffino P. Mutations causing charge alterations in regulatory subunits of the cAMP-dependent protein kinase of cultured S49 lymphoma cells. Cell. 1977 Mar;10(3):381–391. doi: 10.1016/0092-8674(77)90025-3. [DOI] [PubMed] [Google Scholar]