Skip to main content
Genetics logoLink to Genetics
. 1982 Nov;102(3):467–483. doi: 10.1093/genetics/102.3.467

Chromosome Interactions in DROSOPHILA MELANOGASTER. I. Viability Studies

Robert D Seager 1, Francisco J Ayala 1
PMCID: PMC1201952  PMID: 6816675

Abstract

The nature of fitness interactions is an important, yet unsolved, question in population genetics. We compare the egg-to-adult viability of individuals homozygous for either a second or a third chromosome with the viability of individuals homozygous for both chromosomes simultaneously. On the average, the viability of the two-chromosome homozygotes is somewhat greater than expected assuming that the fitnesses of the single-chromosome homozygotes interact in a multiplicative fashion. This result differs from previous observations that indicate either no significant deviations from the expectation or lower-than-expected average fitnesses for the double homozygotes.

Full Text

The Full Text of this article is available as a PDF (970.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DOBZHANSKY T., SPASSKY B., TIDWELL T. Genetics of natural populations. 32. Inbreeding and the mutational and balanced genetic loads in natural populations of Drosophila pseudoobscura. Genetics. 1963 Mar;48:361–373. doi: 10.1093/genetics/48.3.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kosuda K. Synergistic Effect of Inbreeding on Viability in DROSOPHILA VIRILIS. Genetics. 1972 Nov;72(3):461–468. doi: 10.1093/genetics/72.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. MALOGOLOWKIN-COHEN C., LEVENE H., DOBZHANSKY N. P., SIMMONS A. S. INBREEDING AND THE MUTATIONAL AND BALANCED LOADS IN NATURAL POPULATIONS OF DROSOPHILA WILLISTONI. Genetics. 1964 Dec;50:1299–1311. doi: 10.1093/genetics/50.6.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Marinković D., Ayala F. J. Fitness of allozyme variants in Drosophila pseudoobscura. II. Selection at the Est-5, Odh and Mdh-2 loci. Genet Res. 1974 Oct;24(2):137–149. doi: 10.1017/s0016672300015172. [DOI] [PubMed] [Google Scholar]
  5. Mukai T., Yamaguchi O. The genetic structure of natural populations of Drosophila melanogaster. XI. Genetic variability in a local population. Genetics. 1974 Feb;76(2):339–366. doi: 10.1093/genetics/76.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Prout T. The Relation between Fitness Components and Population Prediction in Drosophila. I: The Estimation of Fitness Components. Genetics. 1971 May;68(1):127–149. doi: 10.1093/genetics/68.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Seager R. D., Ayala F. J., Marks R. W. Chromosome interactions in Drosophila melanogaster. II. Total fitness. Genetics. 1982 Nov;102(3):485–502. doi: 10.1093/genetics/102.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Spassky B., Dobzhansky T., Anderson W. W. Genetics of natural populations. XXXVI. Epistatic interactions of the components of the genetic load in Drosophila pseudoobscura. Genetics. 1965 Sep;52(3):653–664. doi: 10.1093/genetics/52.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Temin R. G., Meyer H. U., Dawson P. S., Crow J. F. The influence of epistasis on homozygous viability depression in Drosophila melanogaster. Genetics. 1969 Feb;61(2):497–519. doi: 10.1093/genetics/61.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tracey M. L., Ayala F. J. Genetic load in natural populations: is it compatible with the hypothesis that many polymorphisms are maintained by natural selection? Genetics. 1974 Jul;77(3):569–589. doi: 10.1093/genetics/77.3.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wilson J. Experimental determination of fitness interactions in Drosophila melanogaster by the method of marginal populations. Genetics. 1968 Aug;59(4):501–511. doi: 10.1093/genetics/59.4.501. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES