Skip to main content
Genetics logoLink to Genetics
. 1983 Jun;104(2):317–341. doi: 10.1093/genetics/104.2.317

Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: Factors Affecting Chromosomal Contamination in the P-M System

Margaret G Kidwell 1
PMCID: PMC1202079  PMID: 17246138

Abstract

The two interacting components of the P-M system of hybrid dysgenesis are chromosomally associated elements called P factors and a susceptible cytoplasmic state referred to as M cytotype. Previous experiments have indicated that P factors are a family of multiple-copy transposable genetic elements dispersed throughout the genome of P strains but absent in long-established M strains.—Evidence is presented that the sterility and male recombination-inducing potential of P elements may be acquired by X chromosomes, derived from M strains, through nonhomologous association with P strain autosomes, a process referred to as "chromosomal contamination." The frequencies of chromosomal contamination of X chromosomes by P strain autosomes were highly variable and depended on a number of factors. M cytotype (as opposed to P cytotype) was essential for high frequencies of P factor contamination. There were large differences in contamination potential among individual female families, and a weak negative correlation existed between family size and contamination frequency. Chromosomal contamination in the P-M system was shown to be independent of that in the I-R system.—Frequency distributions suggested that the relationship between sterility production and P factor insertion is complex. The majority of P element transpositions, identified by in situ hybridization in one X chromosome, were not associated with gonadal sterility. However, high sterility potential was found to be associated with the presence of at least one P element inserted into the X chromosome. This potential was lost at a rate of about one-sixth per generation in M cytotype but was stabilized in P cytotype. Various hypotheses concerning the relationship between transposition and chromosomal contamination are discussed.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bingham P. M., Kidwell M. G., Rubin G. M. The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell. 1982 Jul;29(3):995–1004. doi: 10.1016/0092-8674(82)90463-9. [DOI] [PubMed] [Google Scholar]
  2. Bregliano J. C., Picard G., Bucheton A., Pelisson A., Lavige J. M., L'Heritier P. Hybrid dysgenesis in Drosophila melanogaster. Science. 1980 Feb 8;207(4431):606–611. doi: 10.1126/science.6766221. [DOI] [PubMed] [Google Scholar]
  3. Engels W. R. Extrachromosomal control of mutability in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1979 Aug;76(8):4011–4015. doi: 10.1073/pnas.76.8.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kidwell M. G., Kidwell J. F. Cytoplasm-chromosome interactions in prosophila melanogaster. Nature. 1975 Feb 27;253(5494):755–756. doi: 10.1038/253755a0. [DOI] [PubMed] [Google Scholar]
  5. Kidwell M. G., Kidwell J. F. Selection for male recombination in Drosophila melanogaster. Genetics. 1976 Oct;84(2):333–351. doi: 10.1093/genetics/84.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kidwell M. G., Novy J. B. Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: Sterility Resulting from Gonadal Dysgenesis in the P-M System. Genetics. 1979 Aug;92(4):1127–1140. doi: 10.1093/genetics/92.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Picard G. Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. Genetics. 1976 May;83(1):107–123. doi: 10.1093/genetics/83.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rubin G. M., Kidwell M. G., Bingham P. M. The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell. 1982 Jul;29(3):987–994. doi: 10.1016/0092-8674(82)90462-7. [DOI] [PubMed] [Google Scholar]
  9. Schaefer R. E., Kidwell M. G., Fausto-Sterling A. Hybrid Dysgenesis in DROSOPHILA MELANOGASTER: Morphological and Cytological Studies of Ovarian Dysgenesis. Genetics. 1979 Aug;92(4):1141–1152. doi: 10.1093/genetics/92.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yannopoulos G. Ability of the male recombination factor 31.1 MRF to be transposed to another chromosome in Drosophila melanogaster. Mol Gen Genet. 1979 Oct 3;176(2):247–253. doi: 10.1007/BF00273219. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES