Abstract
During amino acid sequence studies of carbonic anhydrase (CA) III, purified from a pool of human skeletal muscles, an electrophoretically undetectable (silent) variation was found at residue 31 which was either valine and/or isoleucine. To distinguish a simple allelic polymorphism from more complex models involving gene duplication, 11 separate CA III samples were purified from individuals of different age and racial backgrounds. Peptide mapping by high performance liquid chromatography and sequencing indicated that four were homozygous for 31-Val, three homozygous for 31-Ile and four were apparent heterozygotes. Since the ratio of Val/Ile at residue 31 was approximately 1.0 in the heterozygotes, the present observations are consistent with a simple allelic polymorphism model. Despite the small sample size, there are preliminary indications that the gene frequencies may differ among racial groups. The finding of this silent allelic polymorphism together with the finding of an electrophoretically detectable polymorphism of CA II permits us to test the linkage of the CA II and CA III genes which appear to have been formed by gene dupliction more than 300 million years ago. The possibility that the Val/Ile variation may represent a neutral mutation is discussed.
Full Text
The Full Text of this article is available as a PDF (996.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bowman B. H., Kurosky A. Haptoglobin: the evolutionary product of duplication, unequal crossing over, and point mutation. Adv Hum Genet. 1982;12:189-261, 453-4. doi: 10.1007/978-1-4615-8315-8_3. [DOI] [PubMed] [Google Scholar]
- Carter N. D. Carbonic anhydrase isozymes in Cavia porcellus, Cavia aperea and their hybrids. Comp Biochem Physiol B. 1972 Nov 15;43(3):743–747. doi: 10.1016/0305-0491(72)90159-9. [DOI] [PubMed] [Google Scholar]
- Carter N. D., Hewett-Emmett D., Jeffrey S., Tashian R. E. Testosterone-induced, sulfonamide-resistant carbonic anhydrase isozyme of rat liver is indistinguishable from skeletal muscle carbonic anhydrase III. FEBS Lett. 1981 Jun 1;128(1):114–118. doi: 10.1016/0014-5793(81)81094-0. [DOI] [PubMed] [Google Scholar]
- Carter N., Jeffery S., Shiels A., Edwards Y., Tipler T., Hopkinson D. A. Characterization of human carbonic anhydrase III from skeletal muscle. Biochem Genet. 1979 Oct;17(9-10):837–854. doi: 10.1007/BF00504307. [DOI] [PubMed] [Google Scholar]
- Congote L. F. Rapid procedure for globin chain analysis in blood samples of normal and beta-thalassemic fetuses. Blood. 1981 Feb;57(2):353–360. [PubMed] [Google Scholar]
- Curtis P. J. Cloning of mouse carbonic anhydrase mRNA and its induction in mouse erythroleukemic cells. J Biol Chem. 1983 Apr 10;258(7):4459–4463. [PubMed] [Google Scholar]
- DeSimone J., Linde M., Tashian R. E. Evidence for linkage of carbonic anhydrase isozyme genes in the pig-tailed macaque, Macaca nemestrina. Nat New Biol. 1973 Mar 14;242(115):55–56. doi: 10.1038/newbio242055a0. [DOI] [PubMed] [Google Scholar]
- Holmes R. S. Mammalian carbonic anhydrase isozymes: evidence for a third locus. J Exp Zool. 1976 Aug;197(2):289–295. doi: 10.1002/jez.1401970210. [DOI] [PubMed] [Google Scholar]
- Jones G. L., Shaw D. C. Purification, properties, partial sequence and evolutionary relationships of marsupial erythrocyte carbonic anhydrase. Biochim Biophys Acta. 1982 Dec 20;709(2):284–303. doi: 10.1016/0167-4838(82)90471-x. [DOI] [PubMed] [Google Scholar]
- Kageoka T., Hewett-Emmett D., Stroup S. K., Yu Y. S., Tashian R. E. Amino acid substitution and chemical characterization of a Japanese variant of carbonic anhydrase I: CA I Hiroshima-1 (86 Asp replaced by Gly). Biochem Genet. 1981 Jun;19(5-6):535–549. doi: 10.1007/BF00484625. [DOI] [PubMed] [Google Scholar]
- Kendall A. G., Tashian R. E. Erythrocyte carbonic anhydrase I: inherited deficiency in humans. Science. 1977 Jul 29;197(4302):471–472. doi: 10.1126/science.406674. [DOI] [PubMed] [Google Scholar]
- Kimura M., Ohta T. Protein polymorphism as a phase of molecular evolution. Nature. 1971 Feb 12;229(5285):467–469. doi: 10.1038/229467a0. [DOI] [PubMed] [Google Scholar]
- Koester M. K., Pullan L. M., Noltmann E. A. The p-nitrophenyl phosphatase activity of muscle carbonic anhydrase. Arch Biochem Biophys. 1981 Oct 15;211(2):632–642. doi: 10.1016/0003-9861(81)90499-9. [DOI] [PubMed] [Google Scholar]
- Koester M. K., Register A. M., Noltmann E. A. Basic muscle protein, a third genetic locus isoenzyme of carbonic anhydrase? Biochem Biophys Res Commun. 1977 May 9;76(1):196–204. doi: 10.1016/0006-291x(77)91686-2. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
- Nute P. E. Multiple hemoglobin alpha-chain loci in monkeys, apes, and man. Ann N Y Acad Sci. 1974 Nov 29;241(0):39–60. doi: 10.1111/j.1749-6632.1974.tb21865.x. [DOI] [PubMed] [Google Scholar]
- Osborne W. R., Tashian R. E. An improved method for the purification of carbonic anhydrase isozymes by affinity chromatography. Anal Biochem. 1975 Mar;64(1):297–303. doi: 10.1016/0003-2697(75)90434-0. [DOI] [PubMed] [Google Scholar]
- Pocker Y., Sarkanen S. Carbonic anhydrase: structure catalytic versatility, and inhibition. Adv Enzymol Relat Areas Mol Biol. 1978;47:149–274. doi: 10.1002/9780470122921.ch3. [DOI] [PubMed] [Google Scholar]
- Register A. M., Koester M. K., Noltmann E. A. Discovery of carbonic anhydrase in rabbit skeletal muscle and evidence for its identity with "basic muscle protein". J Biol Chem. 1978 Jun 25;253(12):4143–4152. [PubMed] [Google Scholar]
- Sanyal G., Swenson E. R., Pessah N. I., Maren T. H. The carbon dioxide hydration activity of skeletal muscle carbonic anhydrase. Inhibition by sulfonamides and anions. Mol Pharmacol. 1982 Jul;22(1):211–220. [PubMed] [Google Scholar]
- Sly W. S., Hewett-Emmett D., Whyte M. P., Yu Y. S., Tashian R. E. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A. 1983 May;80(9):2752–2756. doi: 10.1073/pnas.80.9.2752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strahler J. R., Meisler M. Two distinct pancreatic amylase genes are active in YBR mice. Genetics. 1982 May;101(1):91–102. doi: 10.1093/genetics/101.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson J. M., Tarr G. E., Kelley W. N. Human hypoxanthine (guanine) phosphoribosyltransferase: an amino acid substitution in a mutant form of the enzyme isolated from a patient with gout. Proc Natl Acad Sci U S A. 1983 Feb;80(3):870–873. doi: 10.1073/pnas.80.3.870. [DOI] [PMC free article] [PubMed] [Google Scholar]