Abstract
Maternal-zygotic interactions involving the three genes dorsal (dl), twist (twi) and snail (sna) are described. The results suggest that all three are involved in the process by which the dorsoventral pattern of the Drosophila embryo is established. First, the lethal embryonic mutant phenotypes are rather similar. In homozygous twi or sna embryos invagination of the ventral presumptive mesodermal cells fails to occur, and the resulting embryos are devoid of internal organs. This is very similar to the dominant phenotype described for dl; in the case of dl, however, the effect is a maternal one dependent on the mutant genotype of the female. Second, a synergistic interaction has been found whereby dominant lethality of twi- or sna-bearing zygotes is observed in embryos derived from heterozygous dl females at high temperature. The temperature sensitivity of this interaction permitted definition of a temperature-sensitive period which is probably that of dl. This was found to extend from approximately 12 hr prior to oviposition to 2–3 hr of embryogenesis. A zygotic action for the dl gene in addition to the maternal effect was revealed by the finding that extra doses of dl+ in the zygotes can partially rescue the dominant lethality of heterozygous twi embryos derived from heterozygous dl females. Two possible interpretations of the synergism are considered: (1) twi and sna are activated in the embryos as a result of positional signals placed in the egg as a consequence of the functioning of the dl gene during oogenesis and, thus, play a role in embryonic determination. (2) The gene products of dl+ and twi + (or sna+) combine to produce a functional molecule that is involved in the specification of dorsoventral pattern in the early embryo.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaron C. S. X-ray-induced mutations affecting the level of the enzyme alcohol dehydrogenase in Drosophila melanogaster: frequency and genetic analysis of null-enzyme mutants. Mutat Res. 1979 Nov;63(1):127–137. doi: 10.1016/0027-5107(79)90109-x. [DOI] [PubMed] [Google Scholar]
- Ashburner M., Aaron C. S., Tsubota S. The genetics of a small autosomal region of Drosophila melanogaster, including the structural gene for alcohol dehydrogenase. V. Characterization of X-ray-induced Adh null mutations. Genetics. 1982 Nov;102(3):421–435. doi: 10.1093/genetics/102.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashburner M., Tsubota S., Woodruff R. C. The genetics of a small chromosome region of Drosophila melanogaster containing the structural gene for alcohol dehydrogenase. IV: scutoid, an antimorphic mutation. Genetics. 1982 Nov;102(3):401–420. doi: 10.1093/genetics/102.3.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cline T. W. Maternal and zygotic sex-specific gene interactions in Drosophila melanogaster. Genetics. 1980 Dec;96(4):903–926. doi: 10.1093/genetics/96.4.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gans M., Forquignon F., Masson M. The role of dosage of the region 7D1-7D5-6 of the X chromosome in the production of homeotic transformations in Drosophila melanogaster. Genetics. 1980 Dec;96(4):887–902. doi: 10.1093/genetics/96.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Bellido A., Moscoso del Pradio J. Genetic analysis of maternal information in Drosophila. Nature. 1979 Mar 22;278(5702):346–348. doi: 10.1038/278346a0. [DOI] [PubMed] [Google Scholar]
- Lewis E. B. A gene complex controlling segmentation in Drosophila. Nature. 1978 Dec 7;276(5688):565–570. doi: 10.1038/276565a0. [DOI] [PubMed] [Google Scholar]
- Lohs-Schardin M., Cremer C., Nüsslein-Volhard C. A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol. 1979 Dec;73(2):239–255. doi: 10.1016/0012-1606(79)90065-4. [DOI] [PubMed] [Google Scholar]
- Nüsslein-Volhard C., Lohs-Schardin M., Sander K., Cremer C. A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature. 1980 Jan 31;283(5746):474–476. doi: 10.1038/283474a0. [DOI] [PubMed] [Google Scholar]
- Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980 Oct 30;287(5785):795–801. doi: 10.1038/287795a0. [DOI] [PubMed] [Google Scholar]