Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALBERS R. W., BRADY R. O. The distribution of glutamic decarboxylase in the nervous system of the rhesus monkey. J Biol Chem. 1959 Apr;234(4):926–928. [PubMed] [Google Scholar]
- ALLWEIS C., MAGNES J. The uptake and oxidation of glucose by the perfused cat brain. J Neurochem. 1958;2(4):326–336. doi: 10.1111/j.1471-4159.1958.tb12382.x. [DOI] [PubMed] [Google Scholar]
- BARTLEY W., DAVIES R. E. Active transport of ions by sub-cellular particles. Biochem J. 1954 May;57(1):37–49. doi: 10.1042/bj0570037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BELLAMY D. The endogenous citric acid-cycle intermediates and amino acids of mitochondria. Biochem J. 1962 Jan;82:218–224. doi: 10.1042/bj0820218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BELOFF-CHAIN A., CATANZARO R., CHAIN E. B., MASI I., POCCHIARA F. Fate of uniformly labelled 14C glucose in brain slices. Proc R Soc Lond B Biol Sci. 1955 Aug 16;144(914):22–28. doi: 10.1098/rspb.1955.0031. [DOI] [PubMed] [Google Scholar]
- BORST P. The pathway of glutamate oxidation by mitochondria isolated from different tissues. Biochim Biophys Acta. 1962 Feb 26;57:256–269. doi: 10.1016/0006-3002(62)91119-8. [DOI] [PubMed] [Google Scholar]
- BUSCH H., FUJIWARA E., KEER L. M. Metabolic patterns for glucose-1-C14 in tissues of tumor-bearing rats. Cancer Res. 1960 Jan;20:50–57. [PubMed] [Google Scholar]
- BUSCH H. Studies on the metabolism of pyruvate-2-C14 in tumor-bearing rats. Cancer Res. 1955 Jul;15(6):365–374. [PubMed] [Google Scholar]
- CASE E. M., McILWAIN H. Respiration and phosphorylation in preparations from Mammalian Brain. Biochem J. 1951 Jan;48(1):1–11. doi: 10.1042/bj0480001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CRAVIOTO R. O., MASSIEU G., IZQUIERDO J. J. Free amino-acids in rat brain during insulin shock. Proc Soc Exp Biol Med. 1951 Dec;78(3):856–858. doi: 10.3181/00379727-78-19241. [DOI] [PubMed] [Google Scholar]
- CRAWFORD L. V. Studies on the aspartic decarboxylase of Nocardia globerula. Biochem J. 1958 Feb;68(2):221–225. doi: 10.1042/bj0680221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEY K. F. The concentration of glucose in rat tissues. Biochem J. 1956 Sep;64(1):145–150. doi: 10.1042/bj0640145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIBSON Q. H., WISEMAN G. Selective absorption of stereo-isomers of amino-acids from loops of the small intestine of the rat. Biochem J. 1951 Apr;48(4):426–429. doi: 10.1042/bj0480426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDFINE H. The formation of gamma-hydroxy-gamma-methylglutamic acid form a common impurity in pyruvic acid. Biochim Biophys Acta. 1960 Jun 3;40:557–559. doi: 10.1016/0006-3002(60)91407-4. [DOI] [PubMed] [Google Scholar]
- HASLAM R. J., KREBS H. A. Substrate competition in the respiration of animal tissues. The metabolic interactions of pyruvate and alpha-oxoglutarate in rat-liver homogenates. Biochem J. 1963 Mar;86:432–446. doi: 10.1042/bj0860432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLZER H., HOLLDORF A. Isolierung von D-Glycerat-dehydrogenase, einige Eigenschaften des Enzyms und seine Verwendung zur enzymatisch-optischen Bestimmung von Hydroxypyruvat neben Pyruvat. Biochem Z. 1957;329(4):292–312. [PubMed] [Google Scholar]
- JENKINS W. T., SIZER I. W. Glutamic aspartic transaminase. II. The influence of pH on absorption spectrum and enzymatic activity. J Biol Chem. 1959 May;234(5):1179–1181. [PubMed] [Google Scholar]
- JONES E. A., GUTFREUND H. The control of some oxidative pathways in guinea-pig mammary-gland mitochondria. Biochem J. 1961 Jun;79:608–614. doi: 10.1042/bj0790608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KINI M. M., QUASTEL J. H. Carbohydrate--amino-acid inter-relations in brain cortex in vitro. Nature. 1959 Jul 25;184:252–256. doi: 10.1038/184252a0. [DOI] [PubMed] [Google Scholar]
- KORNBERG H. L. The metabolism of C2 compounds in micro-organisms. I. The incorporation of [2-14C] acetate by Pseudomonas fluorescens, and by a Corynebacterium, grown on ammonium acetate. Biochem J. 1958 Mar;68(3):535–542. doi: 10.1042/bj0680535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KREBS H. A., BELLAMY D. The interconversion of glutamic acid and aspartic acid in respiring tissues. Biochem J. 1960 Jun;75:523–529. doi: 10.1042/bj0750523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KREBS H. A. Manometric determination of L-aspartic acid and L-asparagine. Biochem J. 1950 Nov-Dec;47(5):605–614. doi: 10.1042/bj0470605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A., Eggleston L. V., Hems R. Distribution of glutamine and glutamic acid in animal tissues. Biochem J. 1949;44(2):159–163. doi: 10.1042/bj0440159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krebs H. A. Quantitative determination of glutamine and glutamic acid. Biochem J. 1948;43(1):51–57. doi: 10.1042/bj0430051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LARGE P. J., PEEL D., QUAYLE J. R. Microbial growth on C1 compounds. II. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AM 1, and methanol-grown Hyphomicrobium vulgare. Biochem J. 1961 Dec;81:470–480. doi: 10.1042/bj0810470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATZELT D., ORIOL-BOSCH A., VOIGT K. D. [The influence of cortisol on the transaminating and glycolytic enzymatic activities of rat liver]. Biochem Z. 1962;335:485–499. [PubMed] [Google Scholar]
- MONTGOMERY C. M., WEBB J. L. Metabolic studies on heart mitochondria. II. The inhibitory action of parapyruvate on the tricarboxylic acid cycle. J Biol Chem. 1956 Jul;221(1):359–368. [PubMed] [Google Scholar]
- NISONOFF A., BARNES F. W., Jr, ENNS T., VON SCHUCHING S. Mechanisms in enzymatic transamination reaction between carbon chains of same length. Bull Johns Hopkins Hosp. 1954 Mar;94(3):117–127. [PubMed] [Google Scholar]
- ROBERTS E., ROTHSTEIN M., BAXTER C. F. Some metabolic studies of gamma-aminobutyric acid. Proc Soc Exp Biol Med. 1958 Apr;97(4):796–802. doi: 10.3181/00379727-97-23883. [DOI] [PubMed] [Google Scholar]
- SACKS W. Cerebral metabolism of glucose-3-C14, pyruvate-1-C14 and lactate-1-C14 in mental disease. J Appl Physiol. 1961 Jan;16:175–180. doi: 10.1152/jappl.1961.16.1.175. [DOI] [PubMed] [Google Scholar]
- SACKS W. Cerebral metabolism of isotopic glucose in normal human subjects. J Appl Physiol. 1957 Jan;10(1):37–44. doi: 10.1152/jappl.1957.10.1.37. [DOI] [PubMed] [Google Scholar]
- SALVADOR R. A., ALBERS R. W. The distribution of glutamic-gamma-aminobutric transaminase in the nervous system of the rhesus monkey. J Biol Chem. 1959 Apr;234(4):922–925. [PubMed] [Google Scholar]
- SCHWERIN P., BESSMAN S. P., WAELSCH H. The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. J Biol Chem. 1950 May;184(1):37–44. [PubMed] [Google Scholar]
- SELLINGER O. Z., CATANZARO R., CHAIN E. B., POCCHIARIF The metabolism of glutamate and aspartate in rat cerebral cortical slices. Proc R Soc Lond B Biol Sci. 1962 Jul 31;156:148–162. doi: 10.1098/rspb.1962.0035. [DOI] [PubMed] [Google Scholar]
- SHRIVASTAVA G. C., QUASTEL J. H. Malignancy and tissue metabolism. Nature. 1962 Dec 1;196:876–880. doi: 10.1038/196876a0. [DOI] [PubMed] [Google Scholar]
- Stern J. R., Eggleston L. V., Hems R., Krebs H. A. Accumulation of glutamic acid in isolated brain tissue. Biochem J. 1949;44(4):410–418. [PMC free article] [PubMed] [Google Scholar]
- TAKAGAKI G., HIRANO S., TSUKADA Y. Endogenous respiration and ammonia formation in brain slices. Arch Biochem Biophys. 1957 May;68(1):196–205. doi: 10.1016/0003-9861(57)90340-5. [DOI] [PubMed] [Google Scholar]
- TAYLOR T. G. A modified procedure for the microdetermination of citric acid. Biochem J. 1953 Apr;54(1):48–49. doi: 10.1042/bj0540048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VELICK S. F., VAVRA J. A kinetic and equilibrium analysis of the glutamic oxaloacetate transaminase mechanism. J Biol Chem. 1962 Jul;237:2109–2122. [PubMed] [Google Scholar]
- VRBA R., GAITONDE M. K., RICHTER D. The conversion of glucose carbon into protein in the brain and other organs of the rat. J Neurochem. 1962 Sep-Oct;9:465–475. doi: 10.1111/j.1471-4159.1962.tb04199.x. [DOI] [PubMed] [Google Scholar]
- WAELSCH H., LAJTHA A. Protein metabolism in the nervous system. Physiol Rev. 1961 Oct;41:709–736. doi: 10.1152/physrev.1961.41.4.709. [DOI] [PubMed] [Google Scholar]
- WEINMAN E. O., STRISOWER E. H., CHAIKOFF I. L. Conversion of fatty acids to carbohydrate; application of isotopes to this problem and role of the Krebs cycle as a synthetic pathway. Physiol Rev. 1957 Apr;37(2):252–272. doi: 10.1152/physrev.1957.37.2.252. [DOI] [PubMed] [Google Scholar]
- WILSON W. E., HILL R. J., KOEPPE R. E. The metabolism of gamma-aminobutyric acid-4-C14 by intact rats. J Biol Chem. 1959 Feb;234(2):347–349. [PubMed] [Google Scholar]
- WINZLER R. J., MOLDAVE K., RAFELSON M. E., Jr, PEARSON H. E. Conversion of glucose to amino acids by brain and liver of the new-born mouse. J Biol Chem. 1952 Dec;199(2):485–492. [PubMed] [Google Scholar]
- von FELLENBERG, EPPENBERGER H., RICHTERICH R., AEBI H. [The glycolytic erzyme pattern in the liver, kidney, skeletal muscle, heart muscle and brain of rats and mice]. Biochem Z. 1962;336:334–350. [PubMed] [Google Scholar]