Abstract
Genetic mapping studies had shown that the bacterial transposon Tn5 can insert into many sites in a gene, but that some sites are preferred. To begin understanding Tn5's insertion specificity at the molecular level, we selected transpositions of Tn5 from the Escherichia coli chromosome to the plasmid pBR322 and analyzed the resultant pBR322::Tn5 plasmids by restriction endonuclease digestion and DNA sequencing. Seventy-five insertions in the tet gene were found at 28 sites including one major hotspot (with 21 insertions) and four lesser hotspots (with four to ten insertions each). All five hotspots are within the first 300 of the 1250-base pair (bp) tet gene. In contrast, 31 independent insertions in the amp gene were found in at least 27 distinct sites.—Tn5 generates 9 bp target sequence duplications when it transposes. Such transposon-induced duplications are generally taken to indicate that cleavages of complementary target DNA strands are made 9 bp apart during transposition. DNA sequence analysis indicated that GC base pairs occupy positions 1 and 9 in the duplications at each of the five hotspots examined, suggesting a GC-cutting preference during Tn5 transposition.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Halling S. M., Kleckner N. A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell. 1982 Jan;28(1):155–163. doi: 10.1016/0092-8674(82)90385-3. [DOI] [PubMed] [Google Scholar]
- Jorgensen R. A., Rothstein S. J., Reznikoff W. S. A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol Gen Genet. 1979;177(1):65–72. doi: 10.1007/BF00267254. [DOI] [PubMed] [Google Scholar]
- Klaer R., Kühn S., Tillmann E., Fritz H. J., Starlinger P. The sequence of IS4. Mol Gen Genet. 1981;181(2):169–175. doi: 10.1007/BF00268423. [DOI] [PubMed] [Google Scholar]
- Lilley D. M. The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6468–6472. doi: 10.1073/pnas.77.11.6468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peden K. W. Revised sequence of the tetracycline-resistance gene of pBR322. Gene. 1983 May-Jun;22(2-3):277–280. doi: 10.1016/0378-1119(83)90112-9. [DOI] [PubMed] [Google Scholar]
- Schaller H. The intergenic region and the origins for filamentous phage DNA replication. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):401–408. doi: 10.1101/sqb.1979.043.01.046. [DOI] [PubMed] [Google Scholar]