Abstract
The male-specific lethal mutations (msl's) identify loci whose wild-type gene products are essential for male, but not female, viability. Earlier studies in which X-linked gene activities were monitored in msl/msl male larvae demonstrated that these genes are responsible for setting and/or maintaining the level of X chromosome transcription in males (i.e., they are necessary for proper dosage compensation). The present study examines several important questions concerning their mode of action during development—The results of an examination of the effects of an msl-1 deficiency on male-lethal phase and female viability suggest that this mutation is an amorph, or a severe hypomorph. The effects of rendering a fly mutant for more than one male-lethal mutation were also examined. Multiply mutant flies were no more severely affected than singly mutant ones. A gynandromorph analysis revealed that the male-limited lethality associated with msl-2 has no single lethal focus. Somatic clones of homozygous msl-2 cells were initiated at various times during development by X-ray-induced mitotic recombination. An examination of the viability, growth patterns and morphology of marked clones demonstrated that: (1) msl-2+ acts in a cell autonomous manner, (2) msl-2+ function is required not only in larval (polytene) cells as was shown in previous work but is also needed in the diploid cells that give rise to adult structures, (3) the msl-2+ gene is needed fairly late in development and perhaps continuously, (4) the msl-2 mutation does not affect sexual differentiation.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cline T. W. The interaction between daughterless and sex-lethal in triploids: a lethal sex-transforming maternal effect linking sex determination and dosage compensation in Drosophila melanogaster. Dev Biol. 1983 Feb;95(2):260–274. doi: 10.1016/0012-1606(83)90027-1. [DOI] [PubMed] [Google Scholar]
- Ferrus A. Parameters of mitotic recombination in minute mutants of Drosophila melanogaster. Genetics. 1975 Apr;79(4):589–599. doi: 10.1093/genetics/79.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukunaga A., Tanaka A., Oishi K. Maleless, a recessive autosomal mutant of Drosophila melanogaster that specifically kills male zygotes. Genetics. 1975 Sep;81(1):135–141. doi: 10.1093/genetics/81.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garcia-Bellido A., Dapena J. Induction, detection and characterization of cell differentiation mutants in Drosophila. Mol Gen Genet. 1974;128(2):117–130. doi: 10.1007/BF02654485. [DOI] [PubMed] [Google Scholar]
- Garcia-Bellido A., Merriam J. R. Clonal parameters of tergite development in Drosophila. Dev Biol. 1971 Oct;26(2):264–276. doi: 10.1016/0012-1606(71)90126-6. [DOI] [PubMed] [Google Scholar]
- García-Bellido A. Some parameters of mitotic recombination in Drosophila melanogaster. Mol Gen Genet. 1972;115(1):54–72. doi: 10.1007/BF00272218. [DOI] [PubMed] [Google Scholar]
- Herskowitz I H, Schalet A. Induced Changes in Female Germ Cells of Drosophila V. the Contribution of Half-Translocation and Nondisjunction to the Dominant Lethality Induced by X-Raying Oocytes. Genetics. 1957 Sep;42(5):649–660. doi: 10.1093/genetics/42.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirlin P. C., Pitt B., Lucchesi B. R. Comparative effects of prenalterol and dobutamine in a canine model of acute ischemic heart failure. J Cardiovasc Pharmacol. 1981 Jul-Aug;3(4):896–905. doi: 10.1097/00005344-198107000-00023. [DOI] [PubMed] [Google Scholar]
- Lakhotia S. C., Mukherjee A. S. Chromosomal basis of dosage compensation in Drosophila. I. Cellular autonomy of hyperactivity of the male X-chromosome in salivary glands and sex differentiation. Genet Res. 1969 Oct;14(2):137–150. doi: 10.1017/s001667230000197x. [DOI] [PubMed] [Google Scholar]
- Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern C. Somatic Crossing over and Segregation in Drosophila Melanogaster. Genetics. 1936 Nov;21(6):625–730. doi: 10.1093/genetics/21.6.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uenoyama T., Uchida S., Fukunaga A., Oishi K. Studies on the sex-specific lethals of Drosophila melanogaster. IV. Gynandromorph analysis of three male-specific lethals, mle, msl-2(27) and mle(3)132. Genetics. 1982 Oct;102(2):223–231. doi: 10.1093/genetics/102.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright T. R., Beermann W., Marsh J. L., Bishop C. P., Steward R., Black B. C., Tomsett A. D., Wright E. Y. The genetics of dopa decarboxylase in Drosophila melanogaster. IV. The genetics and cytology of the 37B10-37D1 region. Chromosoma. 1981;83(1):45–58. doi: 10.1007/BF00286015. [DOI] [PubMed] [Google Scholar]