Skip to main content
Genetics logoLink to Genetics
. 1984 Jan;106(1):29–44. doi: 10.1093/genetics/106.1.29

An Autosomal Gene That Affects X Chromosome Expression and Sex Determination in CAENORHABDITIS ELEGANS

Philip M Meneely 1, William B Wood 1
PMCID: PMC1202245  PMID: 6537930

Abstract

Recessive mutant alleles at the autosomal dpy-21 locus of C. elegans cause a dumpy phenotype in XX animals but not in XO animals. This dumpy phenotype is characteristic of X chromosome aneuploids with higher than normal X to autosome ratios and is proposed to result from overexpression of X-linked genes. We have isolated a new dpy-21 allele that also causes partial hermaphroditization of XO males, without causing the dumpy phenotype. All dpy-21 alleles show hermaphroditization effects in XO males that carry a duplication of part of the X chromosome and also partially suppress a transformer (tra-1) mutation that converts XX animals into males. Experiments with a set of X chromosome duplications show that the defects of dpy-21 mutants can result from interaction with several different regions of the X chromosome. We propose that dpy-21 regulates X chromosome expression and may be involved in interpreting X chromosome dose for the developmental decisions of both sex determination and dosage compensation.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hodgkin J. A., Brenner S. Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics. 1977 Jun;86(2 Pt 1):275–287. [PMC free article] [PubMed] [Google Scholar]
  2. Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
  4. Kimble J. Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev Biol. 1981 Oct 30;87(2):286–300. doi: 10.1016/0012-1606(81)90152-4. [DOI] [PubMed] [Google Scholar]
  5. Lucchesi J. C., Skripsky T. The link between dosage compensation and sex differentiation in Drosophila melanogaster. Chromosoma. 1981;82(2):217–227. doi: 10.1007/BF00286106. [DOI] [PubMed] [Google Scholar]
  6. Madl J. E., Herman R. K. Polyploids and sex determination in Caenorhabditis elegans. Genetics. 1979 Oct;93(2):393–402. doi: 10.1093/genetics/93.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Skripsky T., Lucchesi J. C. Intersexuality resulting from the interaction of sex-specific lethal mutations in Drosophila melanogaster. Dev Biol. 1982 Nov;94(1):153–162. doi: 10.1016/0012-1606(82)90078-1. [DOI] [PubMed] [Google Scholar]
  8. Waterston R. H. A second informational suppressor, SUP-7 X, in Caenorhabditis elegans. Genetics. 1981 Feb;97(2):307–325. doi: 10.1093/genetics/97.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Wills N., Gesteland R. F., Karn J., Barnett L., Bolten S., Waterston R. H. The genes sup-7 X and sup-5 III of C. elegans suppress amber nonsense mutations via altered transfer RNA. Cell. 1983 Jun;33(2):575–583. doi: 10.1016/0092-8674(83)90438-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES