Abstract
Previous study has demonstrated that incubation of yeast cells of strain AP-1 in sporulation medium at 36° permits them to begin meiosis but that they become arrested at pachytene and undergo enhanced intragenic recombination between ade2 heteroalleles. Tetrad analysis was undertaken to characterize the altered program of meiotic recombination more widely. In one set of experiments, pachytene-arrested cells were permitted to resume sporulation upon transfer to the permissive temperature. In the resulting asci, both postmeiotic segregation and gene conversion were increased several-fold at a number of loci relative to unarrested controls, whereas reciprocal recombination increased two- to threefold. Another set of experiments analyzed the genetic consequences of inducing the pachytene-arrested cells to revert directly to mitotic growth without completion of meiosis. The appearance of homozygous sectors from heterozygous markers revealed that these cells had become committed to appreciable recombination but that reciprocal exchange was less frequent than in normal asci. Taken together, the data indicate that pachytene arrest rendered the cells committed to enhanced recombination upon resumption of sporulation but that most of the crossing over did not occur until release from the arrest. —The genetic basis of pachytene arrest by AP-1 was investigated by mating each of its parents with progeny of strain Y55, which is able to sporulate at 36°. Both of these diploids sporulated at 36°, and asci from the one studied further exhibited 2:2 segregation of the sporulation defect, indicating that pachytene arrest is dependent on a recessive, temperature-sensitive allele at a chromosomal locus.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
- Bell L. R., Byers B. Homologous association of chromosomal DNA during yeast meiosis. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):829–840. doi: 10.1101/sqb.1983.047.01.095. [DOI] [PubMed] [Google Scholar]
- Bell L., Byers B. Occurrence of crossed strand-exchange forms in yeast DNA during meiosis. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3445–3449. doi: 10.1073/pnas.76.7.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byers B., Goetsch L. Reversible pachytene arrest of Saccharomyces cerevisiae at elevated temperature. Mol Gen Genet. 1982;187(1):47–53. doi: 10.1007/BF00384382. [DOI] [PubMed] [Google Scholar]
- Davidow L. S., Goetsch L., Byers B. Preferential Occurrence of Nonsister Spores in Two-Spored Asci of SACCHAROMYCES CEREVISIAE: Evidence for Regulation of Spore-Wall Formation by the Spindle Pole Body. Genetics. 1980 Mar;94(3):581–595. doi: 10.1093/genetics/94.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawes I. W., Hardie I. D. Selective killing of vegetative cells in sporulated yeast cultures by exposure to diethyl ether. Mol Gen Genet. 1974;131(4):281–289. doi: 10.1007/BF00264859. [DOI] [PubMed] [Google Scholar]
- Esposito R. E., Esposito M. S. Genetic recombination and commitment to meiosis in Saccharomyces. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3172–3176. doi: 10.1073/pnas.71.8.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fogel S., Roth R. Mutations affecting meiotic gene conversion in yeast. Mol Gen Genet. 1974 May 31;130(3):189–201. doi: 10.1007/BF00268799. [DOI] [PubMed] [Google Scholar]
- Game J. C., Zamb T. J., Braun R. J., Resnick M., Roth R. M. The Role of Radiation (rad) Genes in Meiotic Recombination in Yeast. Genetics. 1980 Jan;94(1):51–68. doi: 10.1093/genetics/94.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garvik B., Haber J. E. New cytoplasmic genetic element that controls 20S RNA synthesis during sporulation in yeast. J Bacteriol. 1978 Apr;134(1):261–269. doi: 10.1128/jb.134.1.261-269.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goetsch L., Byers B. Meiotic cytology of Saccharomyces cerevisiae in protoplast lysates. Mol Gen Genet. 1982;187(1):54–60. doi: 10.1007/BF00384383. [DOI] [PubMed] [Google Scholar]
- Klapholz S., Esposito R. E. A new mapping method employing a meiotic rec-mutant of yeast. Genetics. 1982 Mar;100(3):387–412. doi: 10.1093/genetics/100.3.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindsley D. L., Sandler L. The genetic analysis of meiosis in female Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci. 1977 Mar 21;277(955):295–312. doi: 10.1098/rstb.1977.0019. [DOI] [PubMed] [Google Scholar]
- Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkins D. D. Biochemical Mutants in the Smut Fungus Ustilago Maydis. Genetics. 1949 Sep;34(5):607–626. doi: 10.1093/genetics/34.5.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simchen G. Are mitotic functions required in meiosis? Genetics. 1974 Apr;76(4):745–753. doi: 10.1093/genetics/76.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snow R. Maximum likelihood estimation of linkage and interference from tetrad data. Genetics. 1979 May;92(1):231–245. doi: 10.1093/genetics/92.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]