Skip to main content
Genetics logoLink to Genetics
. 1984 Jul;107(3):375–393. doi: 10.1093/genetics/107.3.375

Factors Influencing the Effect of Segregation Distortion in Natural Populations of DROSOPHILA MELANOGASTER

Rayla Greenberg Temin 1, Marta Marthas 1
PMCID: PMC1202330  PMID: 17246219

Abstract

The major components of the SD system have been examined in two natural populations of D. melanogaster to investigate how SD behaves and is maintained in nature and to estimate its impact and efficiency. A twofold approach was used: (1) direct measurements of segregation distortion in wild males and (2) measurement of sensitivity of wild SD + chromosomes to SD action. Characterization of newly isolated SD chromosomes and of a large number of SD + chromosomes from nature demonstrated that (1) SD can operate efficiently in the wild genome: 45% of SD/SD+ males collected from nature had k values larger than 0.70. (2) Forty-three of 44 newly recovered SD chromosomes are of the SD-72 type, having a small pericentric inversion that maintains tight linkage among the Sd, E(SD) and Rsp loci in the SD complex. In 1956, most SD chromosomes in Madison lacked this inversion. (3) Only 12 of the 44 SD chromosomes carried a recessive lethal (compared with five of six in 1956), and many of the viable SD chromosomes were fertile as homozygotes, indicating that SD homozygotes need not have obvious reductions in fitness. (4) Among more than 500 wild chromosomes assayed for response to distortion by a strong SD, at least 40-50% were sensitive, about 33% were partially sensitive and 17% were insensitive. This frequency of sensitives is higher than in reports from some other populations. An estimated 12% of the wild chromosomes were classified as true Rspi by their constellation of effects, including a special test of ability to cause self-distortion of a "suicide" chromosome, R(cn)-10. In a direct assay with R(cn)-10, an independent sample of 99 chromosomes from nature gave 30% putative Rspi. Thus, these populations contain in the range of 12-30% Rspi. (5) Chromosomes supersensitive to SD, previously described for certain laboratory stocks, were also found to coexist in nature with SD. (6) Profiles of wild chromosomes with a panel of three or four different SD testers suggest a series of allelic alternatives at the Rsp locus including supersensitive, sensitive, semisensitive and insensitive, and that loci other than Rsp may also be important in determining the effect of SD in nature.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hartl D. L., Hiraizumi Y., Crow J. F. Evidence for sperm dysfunction as the mechanism of segregation distortion in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2240–2245. doi: 10.1073/pnas.58.6.2240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hiraizumi Y., Nakazima K. Deviant sex ratio associated with segregation distortion in Drosophila melanogaster. Genetics. 1967 Apr;55(4):681–697. doi: 10.1093/genetics/55.4.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Martin D. W., Hiraizumi Y. On the Models of Segregation Distortion in DROSOPHILA MELANOGASTER. Genetics. 1979 Oct;93(2):423–435. doi: 10.1093/genetics/93.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Miklos G. L. An investigation of the components of Segregation-Distorter systems in Drosophila melanogaster. Genetics. 1972 Mar;70(3):405–418. doi: 10.1093/genetics/70.3.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Prout T., Bundgaard J., Bryant S. Population genetics of modifiers of meiotic drive. I. The solution of a special case and some general implications. Theor Popul Biol. 1973 Dec;4(4):446–465. doi: 10.1016/0040-5809(73)90020-8. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES