Skip to main content
Genetics logoLink to Genetics
. 1984 Aug;107(4):645–655. doi: 10.1093/genetics/107.4.645

Mutations Affecting Functions of the Drosophila Gene Glued

Alan Garen 1, Barbara R Miller 1, M Luisa Paco-Larson 1
PMCID: PMC1202382  PMID: 6086452

Abstract

Glued mutations in Drosophila comprise an essential complementation group with complex developmental effects. The original Glued mutation ( Gl) has dominant nonlethal effects in heterozygous flies, principally on the morphogenesis of the visual system. Gl also has a recessive lethal effect early in development. Mutations that reverse the dominant visual effects of Gl (GlR mutations) were induced by γ-radiation or by insertions of the transposable P element. The GlR(G) mutations induced by γ-radiation do not reverse the lethal effect of Gl; these appear to be null mutations, some of which (and possibly all) delete segments of the Glued region. The GlR(P) mutations induced by insertion of the P element also reverse concomitantly a recessive lethal effect of Gl, suggesting that both the recessive and dominant effects are controlled by the same gene. The reversal of a lethal effect of Gl by the P element is remarkable, since it indicates that an essential gene function can be restored by insertion of unrelated DNA. Another class of lethal Glued mutations was induced in the normal Gl+ strain by ethyl methanesulfonate (EMS). The EMS mutations belong to the same essential complementation group as Gl, but do not have the strong dominant effects of Gl on the visual system.—The GlR(P) mutations provide a molecular marker for the Glued gene, which was used to map the gene to the 70C2 band of chromosome 3L by in situ hybridization of a P element probe to polytene chromosomes from the GlR(P) strains and also to isolate clones of Glued genomic DNA for molecular studies of the normal gene and the various Glued mutations.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Garen S. H., Kankel D. R. Golgi and genetic mosaic analyses of visual system mutants in Drosophila melanogaster. Dev Biol. 1983 Apr;96(2):445–466. doi: 10.1016/0012-1606(83)90182-3. [DOI] [PubMed] [Google Scholar]
  2. Harte P. J., Kankel D. R. Genetic analysis of mutations at the Glued locus and interacting loci in Drosophila melanogaster. Genetics. 1982 Jul-Aug;101(3-4):477–501. doi: 10.1093/genetics/101.3-4.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Langer-Safer P. R., Levine M., Ward D. C. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4381–4385. doi: 10.1073/pnas.79.14.4381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Langer P. R., Waldrop A. A., Ward D. C. Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6633–6637. doi: 10.1073/pnas.78.11.6633. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES