Skip to main content
Genetics logoLink to Genetics
. 1984 Nov;108(3):589–602. doi: 10.1093/genetics/108.3.589

Heterochromatic Position Effect at the Rosy Locus of DROSOPHILA MELANOGASTER: Cytological, Genetic and Biochemical Characterization

C A Rushlow 1, A Chovnick 1
PMCID: PMC1202427  PMID: 6437902

Abstract

This report describes cytological, genetic and biochemical studies designed to characterize two γ-radiation induced, apparent "underproducer" variants of the rosy locus (ry:3-52.0), ryps1149 and ryps11136. The following observations provide a compelling basis for their diagnosis as heterochromatic position effect variants. (1) They are associated with rearrangements that place heterochromatin adjacent to the rosy region of chromosome 3 (87D). (2) The effect of these mutations on rosy locus expression is subject to modification by abnormal Y chromosome content. (3) The rearrangement alters only the expression of the rosy allele on the same chromosome (cis-acting). (4) The Y chromosome modification is only on the position-affected allele's expression. (5) The recessive lethality associated with the rearrangements relate to specific rosy region vital loci, and for ryps 11136, the lethality is not Y chromosome modified. (6) The peptide product of the position-affected allele is qualitatively normal by several criteria. (7) Heterozygous deletion of 87E2-F2 is a suppressor of the rosy position effect. (8) The rosy position effect on XDH production may be assayed in whole larvae and larval fat body tissue as well as in adults.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chovnick A., Gelbart W., McCarron M., Osmond B. Organization of the rosy locus in Drosophila melanogaster: evidence for a control element adjacent to the xanthine dehydrogenase structural element. Genetics. 1976 Oct;84(2):233–255. doi: 10.1093/genetics/84.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chovnick A., McCarron M., Hilliker A., O'Donnell J., Gelbart W., Clark S. Gene organization in Drosophila. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):1011–1021. doi: 10.1101/sqb.1978.042.01.101. [DOI] [PubMed] [Google Scholar]
  3. HADORN E., SCHWINCK I. Fehlen von Isoxanthopterin und Nicht-Autonomie in der Bildung der roten Augenpigmente bei einer Mutante (rosy2) von Drosophila melanogaster. Z Indukt Abstamm Vererbungsl. 1956;87(4):528–553. [PubMed] [Google Scholar]
  4. Henikoff S. Position Effects and Variegation Enhancers in an Autosomal Region of DROSOPHILA MELANOGASTER. Genetics. 1979 Sep;93(1):105–115. doi: 10.1093/genetics/93.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rushlow C. A., Bender W., Chovnick A. Studies on the mechanism of heterochromatic position effect at the rosy locus of Drosophila melanogaster. Genetics. 1984 Nov;108(3):603–615. doi: 10.1093/genetics/108.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. URSPRUNG H., HADORN E. [Xanthine dehydrogenase in the organs of Drosophila melanogaster]. Experientia. 1961 May 15;17:230–231. doi: 10.1007/BF02160636. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES