Abstract
A genetic procedure is directed for the isolation of chromosomal deletions and duplications with predetermined endpoints. These rearrangements are generated in transduction crosses using a mixture of P22-transducing phage lysates grown on two strains, each carrying a Mud-lac insertion. The formation of duplications and deletions was demonstrated in the his operon using insertions of Mud1-8 (a transposition-defectiveMu d-lac phage). This technique was also used to make larger chromosomal duplications between Mud1-8 insertions in the thr and leu biosynthetic operons and between Mud insertions in the thr and pyrB operons. Genetic evidence is presented that strongly suggests that inheritance of a single Mud prophage by P22-mediated crosses requires two transduced fragments; each carrying part of the Mu d prophage. The two fragments must be involved in three recombinational exchanges; one exchange joins the donor Mud fragments and two exchanges occur between the composite fragment and the recipient chromosome, one on either side of the complete donor Mud element. Since duplications only occur between Mud insertions in the same orientation on the chromosome, the method of duplication formation provides a simple means of determining the orientation of Mud1-8 on the chromosome and, therefore, the direction of transcription of the gene into which Mud is inserted. This method was also used to construct recombinants between a Mud1-8 prophage and Casadaban's protein fusion vector Mud2 and, thereby, isolate Mud2-8, a Mud derivative containing the protein fusion ability of Mud2 and the defective transposition functions of Mud1-8.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
- Anderson P., Roth J. Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc Natl Acad Sci U S A. 1981 May;78(5):3113–3117. doi: 10.1073/pnas.78.5.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Botstein D., Chan R. K., Waddell C. H. Genetics of bacteriophage P22. II. Gene order and gene function. Virology. 1972 Jul;49(1):268–282. doi: 10.1016/s0042-6822(72)80028-x. [DOI] [PubMed] [Google Scholar]
- Casadaban M. J., Chou J. In vivo formation of gene fusions encoding hybrid beta-galactosidase proteins in one step with a transposable Mu-lac transducing phage. Proc Natl Acad Sci U S A. 1984 Jan;81(2):535–539. doi: 10.1073/pnas.81.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casadaban M. J., Cohen S. N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. doi: 10.1073/pnas.76.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebel-Tsipis J., Botstein D., Fox M. S. Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. J Mol Biol. 1972 Nov 14;71(2):433–448. doi: 10.1016/0022-2836(72)90361-0. [DOI] [PubMed] [Google Scholar]
- Giphart-Gassler M., Goosen T., van Meeteren A., Wijffelman C., van de Putte P. Properties of the recombinant plasmid pGP1 containing part of the early region of bacteriophage mu. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1179–1185. doi: 10.1101/sqb.1979.043.01.133. [DOI] [PubMed] [Google Scholar]
- Giphart-Gassler M., Van de Putte P. Thermo-inducible expression of cloned early genes of bacteriophage Mu. Gene. 1979 Sep;7(1):33–50. doi: 10.1016/0378-1119(79)90041-6. [DOI] [PubMed] [Google Scholar]
- Hughes K. T., Cookson B. T., Ladika D., Olivera B. M., Roth J. R. 6-Aminonicotinamide-resistant mutants of Salmonella typhimurium. J Bacteriol. 1983 Jun;154(3):1126–1136. doi: 10.1128/jb.154.3.1126-1136.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes K. T., Roth J. R. Conditionally transposition-defective derivative of Mu d1(Amp Lac). J Bacteriol. 1984 Jul;159(1):130–137. doi: 10.1128/jb.159.1.130-137.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston H. M., Barnes W. M., Chumley F. G., Bossi L., Roth J. R. Model for regulation of the histidine operon of Salmonella. Proc Natl Acad Sci U S A. 1980 Jan;77(1):508–512. doi: 10.1073/pnas.77.1.508. [DOI] [PMC free article] [PubMed] [Google Scholar]