Skip to main content
Genetics logoLink to Genetics
. 1985 Feb;109(2):441–457. doi: 10.1093/genetics/109.2.441

Extranuclear Differentiation and Gene Flow in the Finite Island Model

Naoyuki Takahata 1, Stephen R Palumbi 1
PMCID: PMC1202497  PMID: 17246255

Abstract

Use of sequence information from extranuclear genomes to examine deme structure in natural populations has been hampered by lack of clear linkage between sequence relatedness and rates of mutation and migration among demes. Here, we approach this problem in two complementary ways. First, we develop a model of extranuclear genomes in a population divided into a finite number of demes. Sex-dependent migration, neutral mutation, unequal genetic contribution of separate sexes and random genetic drift in each deme are incorporated for generality. From this model, we derive the relationship between gene identity probabilities (between and within demes) and migration rate, mutation rate and effective deme size. Second, we show how within- and between-deme identity probabilities may be calculated from restriction maps of mitochondrial (mt) DNA. These results, when coupled with our results on gene flow and genetic differentiation, allow estimation of relative interdeme gene flow when deme sizes are constant and genetic variants are selectively neutral. We illustrate use of our results by reanalyzing published data on mtDNA in mouse populations from around the world and show that their geographic differentiation is consistent with an island model of deme structure.

Full Text

The Full Text of this article is available as a PDF (960.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avise J. C., Giblin-Davidson C., Laerm J., Patton J. C., Lansman R. A. Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher, Geomys pinetis. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6694–6698. doi: 10.1073/pnas.76.12.6694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birky C. W., Jr Relaxed cellular controls and organelle heredity. Science. 1983 Nov 4;222(4623):468–475. doi: 10.1126/science.6353578. [DOI] [PubMed] [Google Scholar]
  3. Birky C. W., Jr Transmission genetics of mitochondria and chloroplasts. Annu Rev Genet. 1978;12:471–512. doi: 10.1146/annurev.ge.12.120178.002351. [DOI] [PubMed] [Google Scholar]
  4. Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown W. M., Prager E. M., Wang A., Wilson A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol. 1982;18(4):225–239. doi: 10.1007/BF01734101. [DOI] [PubMed] [Google Scholar]
  6. Cann R. L., Brown W. M., Wilson A. C. Evolution of human mitochondrial DNA: a preliminary report. Prog Clin Biol Res. 1982;103(Pt A):157–165. [PubMed] [Google Scholar]
  7. Cann R. L., Wilson A. C. Length mutations in human mitochondrial DNA. Genetics. 1983 Aug;104(4):699–711. doi: 10.1093/genetics/104.4.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chapman R. W., Stephens J. C., Lansman R. A., Avise J. C. Models of mitochondrial DNA transmission genetics and evolution in higher eucaryotes. Genet Res. 1982 Aug;40(1):41–57. doi: 10.1017/s0016672300018899. [DOI] [PubMed] [Google Scholar]
  9. Engels W. R. Estimating genetic divergence and genetic variability with restriction endonucleases. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6329–6333. doi: 10.1073/pnas.78.10.6329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ewens W. J., Spielman R. S., Harris H. Estimation of genetic variation at the DNA level from restriction endonuclease data. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3748–3750. doi: 10.1073/pnas.78.6.3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Martin S. L., Vincent K. A., Wilson A. C. Rise and fall of the delta globin gene. J Mol Biol. 1983 Mar 15;164(4):513–528. doi: 10.1016/0022-2836(83)90048-7. [DOI] [PubMed] [Google Scholar]
  12. Nei M., Tajima F. DNA polymorphism detectable by restriction endonucleases. Genetics. 1981 Jan;97(1):145–163. doi: 10.1093/genetics/97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ohta T. Two-locus problems in transmission genetics of mitochondria and chloroplasts. Genetics. 1980 Oct;96(2):543–555. doi: 10.1093/genetics/96.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stewart F. M. Variability in the amount of heterozygosity maintained by neutral mutations. Theor Popul Biol. 1976 Apr;9(2):188–201. doi: 10.1016/0040-5809(76)90044-7. [DOI] [PubMed] [Google Scholar]
  15. Takahata N., Slatkin M. Mitochondrial gene flow. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1764–1767. doi: 10.1073/pnas.81.6.1764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thrailkill K. M., Birky C. W., Jr Intracellular population genetics: evidence for random drift of mitochondrial allele frequencies in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genetics. 1980 Sep;96(1):237–262. doi: 10.1093/genetics/96.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wright S. Isolation by Distance. Genetics. 1943 Mar;28(2):114–138. doi: 10.1093/genetics/28.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yonekawa H., Moriwaki K., Gotoh O., Hayashi J. I., Watanabe J., Miyashita N., Petras M. L., Tagashira Y. Evolutionary relationships among five subspecies of Mus musculus based on restriction enzyme cleavage patterns of mitochondrial DNA. Genetics. 1981 Aug;98(4):801–816. doi: 10.1093/genetics/98.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES