Skip to main content
Genetics logoLink to Genetics
. 1985 Jun;110(2):159–171. doi: 10.1093/genetics/110.2.159

Bacteriophage T4 Gene 32 Participates in Excision Repair as Well as Recombinational Repair of Uv Damages

Gisela Mosig 1
PMCID: PMC1202557  PMID: 3891507

Abstract

Gene 32 of phage T4 has been shown previously to be involved in recombinational repair of UV damages but, based on a mutant study, was thought not to be required for excision repair. However, a comparison of UV-inactivation curves of several gene 32 mutants grown under conditions permissive for progeny production in wild-type or polA - hosts demonstrates that gene 32 participates in both kinds of repair. Different gene 32 mutations differentially inactivate these repair functions. Under conditions permissive for DNA replication and progeny production, all gene 32 mutants investigated here are partially defective in recombinational repair, whereas only two of them, P7 and P401, are also defective in excision repair. P401 is the only mutant whose final slope of the inactivation curve is significantly steeper than that of wildtype T4. These results are discussed in terms of interactions of gp32, a single-stranded DNA-binding protein, with DNA and with other proteins.

Full Text

The Full Text of this article is available as a PDF (767.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barricelli N. A., Metcalfe R. The effect of helper phages and--or multiplicity of infection on the repair of ultraviolet damages in T4. Virology. 1968 Nov;36(3):476–489. doi: 10.1016/0042-6822(68)90173-6. [DOI] [PubMed] [Google Scholar]
  2. Boyle J. M., Symonds N. Radiation-sensitive mutants of T4D. I. T4y: a new radiation-sensitive mutant; effect of the mutation on radiation survival, growth and recombination. Mutat Res. 1969 Nov-Dec;8(3):431–439. doi: 10.1016/0027-5107(69)90060-8. [DOI] [PubMed] [Google Scholar]
  3. Conkling M. A., Drake J. W. Isolation and characterization of conditional alleles of bacteriophage T4 genes uvsX and uvsY. Genetics. 1984 Aug;107(4):505–523. doi: 10.1093/genetics/107.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cunningham R. P., Berger H. Mutations affecting genetic recombination in bacteriophage T4D. I. Pathway analysis. Virology. 1977 Jul 1;80(1):67–82. doi: 10.1016/0042-6822(77)90381-6. [DOI] [PubMed] [Google Scholar]
  5. DULBECCO R. Experiments on photoreactivation of bacteriophages inactivated with ultraviolet radiation. J Bacteriol. 1950 Mar;59(3):329–347. doi: 10.1128/jb.59.3.329-347.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dannenberg R., Mosig G. Early intermediates in bacteriophage T4 DNA replication and recombination. J Virol. 1983 Feb;45(2):813–831. doi: 10.1128/jvi.45.2.813-831.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dannenberg R., Mosig G. Semiconservative DNA replication is initiated at a single site in recombination-deficient gene 32 mutants of bacteriophage T4. J Virol. 1981 Dec;40(3):890–900. doi: 10.1128/jvi.40.3.890-900.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Lucia P., Cairns J. Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature. 1969 Dec 20;224(5225):1164–1166. doi: 10.1038/2241164a0. [DOI] [PubMed] [Google Scholar]
  9. Ebisuzaki K., Dewey C. L., Behme M. T. Pathways of DNA repair in T4 phage. I. Methyl methanesulfonate sensitive mutant. Virology. 1975 Apr;64(2):330–338. doi: 10.1016/0042-6822(75)90109-9. [DOI] [PubMed] [Google Scholar]
  10. Ebisuzaki K. Ultraviolet sensitivity and functional capacity in bacteriophage T4. J Mol Biol. 1966 Oct;20(3):545–558. doi: 10.1016/0022-2836(66)90010-6. [DOI] [PubMed] [Google Scholar]
  11. Helene C., Toulme F., Charlier M., Yaniv M. Photosensitized splitting of thymine dimers in DNA by gene 32 protein from phage T 4. Biochem Biophys Res Commun. 1976 Jul 12;71(1):91–98. doi: 10.1016/0006-291x(76)90253-9. [DOI] [PubMed] [Google Scholar]
  12. Kemper B., Jensch F., von Depka-Prondzynski M., Fritz H. J., Borgmeyer U., Mizuuchi K. Resolution of Holliday structures by endonuclease VII as observed in interactions with cruciform DNA. Cold Spring Harb Symp Quant Biol. 1984;49:815–825. doi: 10.1101/sqb.1984.049.01.092. [DOI] [PubMed] [Google Scholar]
  13. Krisch H. M., Allet B. Nucleotide sequences involved in bacteriophage T4 gene 32 translational self-regulation. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4937–4941. doi: 10.1073/pnas.79.16.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miskimins R., Schneider S., Johns V., Bernstein H. Topoisomerase involvement in multiplicity reactivation of phage T4. Genetics. 1982 Jun;101(2):157–177. doi: 10.1093/genetics/101.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miyazaki J., Ryo Y., Minagawa T. Involvement of gene 49 in recombination of bacteriophage T4. Genetics. 1983 May;104(1):1–9. doi: 10.1093/genetics/104.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mortelmans K., Friedberg E. C. Deoxyribonucleic acid repair in bacteriophage T4: observations on the roles of the x and v genes and of host factors. J Virol. 1972 Oct;10(4):730–736. doi: 10.1128/jvi.10.4.730-736.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mosig G., Berquist W., Bock S. Multiple interactions of a DNA-binding protein in vivo. III. Phage T4 gene-32 mutations differentially affect insertion-type recombination and membrane properties. Genetics. 1977 May;86(1):5–23. doi: 10.1093/genetics/86.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mosig G., Breschkin A. M. Genetic evidence for an additional function of phage T4 gene 32 protein: interaction with ligase. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1226–1230. doi: 10.1073/pnas.72.4.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mosig G., Ghosal D., Bock S. Interactions between the maturation protein gp17 and the single-stranded DNA binding protein gp32 initiate DNA packaging and compete with initiation of secondary DNA replication forks in phage T4. Prog Clin Biol Res. 1981;64:139–150. [PubMed] [Google Scholar]
  20. Mosig G., Luder A., Garcia G., Dannenberg R., Bock S. In vivo interactions of genes and proteins in DNA replication and recombination of phage T4. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):501–515. doi: 10.1101/sqb.1979.043.01.056. [DOI] [PubMed] [Google Scholar]
  21. Schnitzlein C. F., Albrecht I., Drake J. W. Is bacteriophage T4 DNA polymerase involved in the repair of ultraviolet damage? Virology. 1974 Jun;59(2):580–583. doi: 10.1016/0042-6822(74)90469-3. [DOI] [PubMed] [Google Scholar]
  22. Smithsm, Ymonds N., White P. The Kornberg polymerase and the repair of irradiated T4 bacteriophage. J Mol Biol. 1970 Dec 14;54(2):391–393. doi: 10.1016/0022-2836(70)90438-9. [DOI] [PubMed] [Google Scholar]
  23. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  24. Wallace S. S., Melamede R. J. Host- and phage-mediated repair of radiation damage in bacteriophage T4. J Virol. 1972 Dec;10(6):1159–1169. doi: 10.1128/jvi.10.6.1159-1169.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wu J. R., Yeh Y. C., Ebisuzaki K. Genetic analysis of dar, uvsW, and uvsY in bacteriophage T4: dar and uvsW are alleles. J Virol. 1984 Dec;52(3):1028–1031. doi: 10.1128/jvi.52.3.1028-1031.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wu J. R., Yeh Y. C. Requirement of a functional gene 32 product of bacteriophage T4 in UV, repair. J Virol. 1973 Oct;12(4):758–765. doi: 10.1128/jvi.12.4.758-765.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES