Skip to main content
Genetics logoLink to Genetics
. 1985 Jun;110(2):299–312. doi: 10.1093/genetics/110.2.299

Molecular Cloning of α-Amylase Genes from DROSOPHILA MELANOGASTER. I. Clone Isolation by Use of a Mouse Probe

Robert M Gemmill 1, Jack N Levy 1, Winifred W Doane 1
PMCID: PMC1202565  PMID: 3924727

Abstract

A cloned α-amylase cDNA sequence from the mouse is homologous to a small set of DNA sequences from Drosophila melanogaster under appropriate conditions of hybridization. A number of recombinant lambda phage that carry homologous Drosophila genomic DNA sequences were isolated using the mouse clone as a hybridization probe. Putative amylase clones hybridized in situ to one or the other of two distinct sites in polytene chromosome 2R and were assigned to one of two classes, A and B. Clone λDm32, representing class A, hybridizes within chromosome section 53CD. Clone λDm65 of class B hybridizes within section 54A1-B1. Clone λDm65 is homologous to a 1450- to 1500-nucleotide RNA species, which is sufficiently long to code for α-amylase. No RNA homologous to λDm32 was detected. We suggest that the class B clone, λDm65, contains the functional Amy structural gene(s) and that class A clones contain an amylase pseudogene.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  2. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  3. Doane W. W., Treat-Clemons L. G., Gemmill R. M., Levy J. N., Hawley S. A., Buchberg A. M., Paigen K. Genetic mechanism for tissue-specific control of alpha-amylase expression in Drosophila melanogaster. Isozymes Curr Top Biol Med Res. 1983;9:63–90. [PubMed] [Google Scholar]
  4. Hagenbüchle O., Bovey R., Young R. A. Tissue-specific expression of mouse-alpha-amylase genes: nucleotide sequence of isoenzyme mRNAs from pancreas and salivary gland. Cell. 1980 Aug;21(1):179–187. doi: 10.1016/0092-8674(80)90125-7. [DOI] [PubMed] [Google Scholar]
  5. Haj-Ahmad Y., Hickey D. A. A molecular explanation of frequency-dependent selection in Drosophila. Nature. 1982 Sep 23;299(5881):350–352. doi: 10.1038/299350a0. [DOI] [PubMed] [Google Scholar]
  6. Hayashi S., Gillam I. C., Delaney A. D., Tener G. M. Acetylation of chromosome squashes of Drosophila melanogaster decreases the background in autoradiographs from hybridization with [125I]-labeled RNA. J Histochem Cytochem. 1978 Aug;26(8):677–679. doi: 10.1177/26.8.99471. [DOI] [PubMed] [Google Scholar]
  7. Hertzberg K. M., Gemmill R., Jones J., Calvo J. M. Cloning of an EcoRI-generated fragment of the leucine operon of Salmonella typhimurium. Gene. 1980 Jan;8(2):135–152. doi: 10.1016/0378-1119(80)90033-5. [DOI] [PubMed] [Google Scholar]
  8. Karn R. C. The comparative biochemistry, physiology, and genetics of animal alpha-amylases. Adv Comp Physiol Biochem. 1978;7:1–103. doi: 10.1016/b978-0-12-011507-5.50007-0. [DOI] [PubMed] [Google Scholar]
  9. Kupersztoch-Portnoy Y. M., Lovett M. A., Helinski D. R. Strand and site specificity of the relaxation event for the relaxation complex of the antibiotic resistance plasmid R6K. Biochemistry. 1974 Dec 31;13(27):5484–5490. doi: 10.1021/bi00724a005. [DOI] [PubMed] [Google Scholar]
  10. Levy J. N., Gemmill R. M., Doane W. W. Molecular cloning of alpha-amylase genes from Drosophila melanogaster. II. Clone organization and verification. Genetics. 1985 Jun;110(2):313–324. doi: 10.1093/genetics/110.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maniatis T., Hardison R. C., Lacy E., Lauer J., O'Connell C., Quon D., Sim G. K., Efstratiadis A. The isolation of structural genes from libraries of eucaryotic DNA. Cell. 1978 Oct;15(2):687–701. doi: 10.1016/0092-8674(78)90036-3. [DOI] [PubMed] [Google Scholar]
  12. Munjaal R. P., Chandra T., Woo S. L., Dedman J. R., Means A. R. A cloned calmodulin structural gene probe is complementary to DNA sequences from diverse species. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2330–2334. doi: 10.1073/pnas.78.4.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  14. Schibler U., Pittet A. C., Young R. A., Hagenbüchle O., Tosi M., Gellman S., Wellauer P. K. The mouse alpha-amylase multigene family. Sequence organization of members expressed in the pancreas, salivary gland and liver. J Mol Biol. 1982 Mar 5;155(3):247–266. doi: 10.1016/0022-2836(82)90004-3. [DOI] [PubMed] [Google Scholar]
  15. Schuler M. A., Keller E. B. The chromosomal arrangement of two linked actin genes in the sea urchin S. purpuratus. Nucleic Acids Res. 1981 Feb 11;9(3):591–604. doi: 10.1093/nar/9.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wensink P. C., Finnegan D. J., Donelson J. E., Hogness D. S. A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster. Cell. 1974 Dec;3(4):315–325. doi: 10.1016/0092-8674(74)90045-2. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES