Skip to main content
Genetics logoLink to Genetics
. 1985 Aug;110(4):647–670. doi: 10.1093/genetics/110.4.647

Mutations in Genes Encoding Essential Mitotic Functions in DROSOPHILA MELANOGASTER

David A Smith 1,2, Bruce S Baker 1,2, Maurizio Gatti 1,2
PMCID: PMC1202585  PMID: 3928429

Abstract

Temperature-sensitive mutations at 15 loci that affect the fidelity of mitotic chromosome behavior have been isolated in Drosophila melanogaster . These mitotic mutants were detected in a collection of 168 EMS-induced X-linked temperature-sensitive (ts) lethal and semilethal mutants. Our screen for mutations with mitotic effects was based upon the reasoning that under semirestrictive conditions such mutations could cause an elevated frequency of mitotic chromosome misbehavior and that such events would be detectable with somatic cell genetic techniques. Males hemizygous for each ts lethal and heterozygous for the recessive autosomal cell marker mwh were reared under semirestrictive conditions, and the wings of those individuals surviving to adulthood were examined for an increased frequency of mwh clones. Those mutations producing elevated levels of chromosome instability during growth of the wing imaginal disc were also examined for their effects on chromosome behavior in the cell lineages producing the abdominal cuticle. Fifteen mutations affect chromosome behavior in both wing and abdominal cells and thus identify loci generally required for the fidelity of mitotic chromosome transmission. Mapping and complementation tests show that these mutations represent 15 loci. One mutant is an allele of a locus (mus-101) previously identified by mutagensensitive mutants and a second mutant is an allele of the lethal locus zw10.—The 15 mutants were also examined cytologically for their effects on chromosomes in larval neuroblasts. Taken together, the results of our cytological and genetical studies show that these mutants identify loci with wild-type functions necessary for either (1) maintenance of chromosome integrity or (2) regular disjunction of chromosomes or (3) chromosome condensation. Thus, these mutations define a broad spectrum of genes required for the normal execution of the mitotic chromosome cycle.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Boyd J. B., Carpenter A. T., Green M. M., Nguyen T. D., Ripoll P., Smith P. D. Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4140–4144. doi: 10.1073/pnas.73.11.4140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker B. S., Smith D. A. The effects of mutagen-sensitive mutants of Drosophila melanogaster in nonmutagenized cells. Genetics. 1979 Jul;92(3):833–847. doi: 10.1093/genetics/92.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyd J. B., Golino M. D., Nguyen T. D., Green M. M. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics. 1976 Nov;84(3):485–506. doi: 10.1093/genetics/84.3.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Garcia-Bellido A., Merriam J. R. Clonal parameters of tergite development in Drosophila. Dev Biol. 1971 Oct;26(2):264–276. doi: 10.1016/0012-1606(71)90126-6. [DOI] [PubMed] [Google Scholar]
  5. Gatti M., Pimpinelli S., Baker B. S. Relationships among chromatid interchanges, sister chromatid exchanges, and meiotic recombination in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1575–1579. doi: 10.1073/pnas.77.3.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gatti M., Smith D. A., Baker B. S. A gene controlling condensation of heterochromatin in Drosophila melanogaster. Science. 1983 Jul 1;221(4605):83–85. doi: 10.1126/science.6407113. [DOI] [PubMed] [Google Scholar]
  7. Gelbart W. M. A new mutant controlling mitotic chromosome disjunction in Drosophila melanogaster. Genetics. 1974 Jan;76(1):51–63. doi: 10.1093/genetics/76.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Stern C. Somatic Crossing over and Segregation in Drosophila Melanogaster. Genetics. 1936 Nov;21(6):625–730. doi: 10.1093/genetics/21.6.625. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES