Skip to main content
Genetics logoLink to Genetics
. 1985 Nov;111(3):403–432. doi: 10.1093/genetics/111.3.403

Elevated Levels of Petite Formation in Strains of SACCHAROMYCES CEREVISIAE Restored to Respiratory Competence. II. Organization of Mitochondrial Genomes in Strains Having High and Moderate Frequencies of Petite Mutant Formation

R J Evans 1, G D Clark-Walker 1
PMCID: PMC1202651  PMID: 2996981

Abstract

Restriction enzyme analysis of aberrant mtDNA molecules in restored strains of Saccharomyces cerevisiae that display an elevated level of petite formation has shown the occurrence of novel junction fragments and nonstoichiometric amounts for some unaltered bands. Five aberrant mitochondrial genomes from high-frequency petite-forming (hfp) strains (>60% petites per generation) contain like-oriented duplications and single copy regions. High-frequency petite formation is postulated to arise from increased intramolecular recombination between duplicated segments. Mitochondrial DNA structures in two other hfp strains cannot be easily interpreted and might arise from intramolecular recombination.—Mitochondria DNA from moderate-frequency petite-forming (mfp) strains (5–16% petites per generation) contains inverted duplications in two cases. The elevated petite formation is postulated to arise from homologous recombination between directly repeated sequences. In mtDNA from one mfp strain, deletion end-points have been shown to overlap. Such deletion endpoint overlap is postulated to be required for the maintenance of the tandem duplication in hfp strains. Two regions of the wild-type mtDNA (between cyb and oli2 and between SrRNA and oxi2) appear to be dispensable for mitochondrial function.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atchison B. A., Choo K. B., Devenish R. J., Linnane A. W., Nagley P. Biogenesis of mitochondria. 53. Physical map of genetic loci in the 21S ribosomal RNA region of mitochondrial DNA in Saccharomyces cerevisiae. Mol Gen Genet. 1979 Jul 24;174(3):307–316. doi: 10.1007/BF00267804. [DOI] [PubMed] [Google Scholar]
  2. Blanc H., Dujon B. Replicator regions of the yeast mitochondrial DNA responsible for suppressiveness. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3942–3946. doi: 10.1073/pnas.77.7.3942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonitz S. G., Coruzzi G., Thalenfeld B. E., Tzagoloff A., Macino G. Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase. J Biol Chem. 1980 Dec 25;255(24):11927–11941. [PubMed] [Google Scholar]
  4. Clark-Walker G. D., McArthur C. R., Sriprakash K. S. Order and orientation of genic sequences in circular mitochondrial DNA from Saccharomyces exiguus: implications for evolution of yeast mtDNAs. J Mol Evol. 1983;19(5):333–341. doi: 10.1007/BF02101636. [DOI] [PubMed] [Google Scholar]
  5. Clark-Walker G. D., Sriprakash K. S. Sequence rearrangements between mitochondrial DNAs of Torulopsis glabrata and Kloeckera africana identified by hybridization with six polypeptide encoding regions from Saccharomyces cerevisiae mitochondrial DNA. J Mol Biol. 1981 Sep 25;151(3):367–387. doi: 10.1016/0022-2836(81)90002-4. [DOI] [PubMed] [Google Scholar]
  6. Greene P. J., Heyneker H. L., Bolivar F., Rodriguez R. L., Betlach M. C., Covarrubias A. A., Backman K., Russel D. J., Tait R., Boyer H. W. A general method for the purification of restriction enzymes. Nucleic Acids Res. 1978 Jul;5(7):2373–2380. doi: 10.1093/nar/5.7.2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hudspeth M. E., Ainley W. M., Shumard D. S., Butow R. A., Grossman L. I. Location and structure of the var1 gene on yeast mitochondrial DNA: nucleotide sequence of the 40.0 allele. Cell. 1982 Sep;30(2):617–626. doi: 10.1016/0092-8674(82)90258-6. [DOI] [PubMed] [Google Scholar]
  8. Marotta R., Colin Y., Goursot R., Bernardi G. A region of extreme instability in the mitochondrial genome of yeast. EMBO J. 1982;1(5):529–534. doi: 10.1002/j.1460-2075.1982.tb01204.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nobrega F. G., Tzagoloff A. Assembly of the mitochondrial membrane system. DNA sequence and organization of the cytochrome b gene in Saccharomyces cerevisiae D273-10B. J Biol Chem. 1980 Oct 25;255(20):9828–9837. [PubMed] [Google Scholar]
  10. O'Farrell P. H., Kutter E., Nakanishi M. A restriction map of the bacteriophage T4 genome. Mol Gen Genet. 1980;179(2):421–435. doi: 10.1007/BF00425473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oakley K. M., Clark-Walker G. D. Abnormal mitochondrial genomes in yeast restored to respiratory competence. Genetics. 1978 Nov;90(3):517–530. doi: 10.1093/genetics/90.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sor F., Fukuhara H. Unequal excision of complementary strands is involved in the generation of palindromic repetitions of rho- mitochondrial DNA in yeast. Cell. 1983 Feb;32(2):391–396. doi: 10.1016/0092-8674(83)90458-0. [DOI] [PubMed] [Google Scholar]
  13. de Zamaroczy M., Marotta R., Faugeron-Fonty G., Goursot R., Mangin M., Baldacci G., Bernardi G. The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity. Nature. 1981 Jul 2;292(5818):75–78. doi: 10.1038/292075a0. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES