Skip to main content
Genetics logoLink to Genetics
. 1986 Feb;112(2):173–182. doi: 10.1093/genetics/112.2.173

Negative Dominant Mutations of the uidR Gene in ESCHERICHIA COLI: Genetic Proof for a Cooperative Regulation of uidA Expression

Carlos Blanco 1, Paul Ritzenthaler 1, Mireille Mata-Gilsinger 1
PMCID: PMC1202694  PMID: 3079718

Abstract

The uidA gene is the first gene involved in the hexuronide-hexuronate pathway in Escherichia coli K-12 and is under the dual control of the uidR and uxuR encoded repressors. Point mutations affecting the uidR regulatory gene were sought to investigate the regulation of uidA. When the uidR mutant allele was on a multicopy plasmid and the wild-type allele was on the chromosome, some of the mutant phenotypes were dominant to the wild-type phenotype, indicating that the active form of the UidR repressor is multimeric. We have demonstrated that expression of the mutant phenotype is dependent on gene dosage. The dominance of the uidR allele was also sensitive to the presence of the wild-type uxuR allele in the cell. This behavior probably results from UidR-UxuR repressor interactions. A mechanism is proposed: we suggest that the UidR and UxuR repressors interact after their binding to the operator site of uidA; the binding of one regulatory molecule may facilitate the binding of the other one in a cooperative process.

Full Text

The Full Text of this article is available as a PDF (575.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanco C., Ritzenthaler P., Mata-Gilsinger M. Cloning and endonuclease restriction analysis of uidA and uidR genes in Escherichia coli K-12: determination of transcription direction for the uidA gene. J Bacteriol. 1982 Feb;149(2):587–594. doi: 10.1128/jb.149.2.587-594.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Charette M. F., Henderson G. W., Kézdy F. J., Markovitz A. Molecular mechanism for dominance of a mutant allele of an ATP-dependent protease. J Mol Biol. 1982 Dec 5;162(2):503–510. doi: 10.1016/0022-2836(82)90541-1. [DOI] [PubMed] [Google Scholar]
  3. Craig N. L., Roberts J. W. E. coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide. Nature. 1980 Jan 3;283(5742):26–30. doi: 10.1038/283026a0. [DOI] [PubMed] [Google Scholar]
  4. Davies J., Jacob F. Genetic mapping of the regulator and operator genes of the lac operon. J Mol Biol. 1968 Sep 28;36(3):413–417. doi: 10.1016/0022-2836(68)90165-4. [DOI] [PubMed] [Google Scholar]
  5. Guerry P., LeBlanc D. J., Falkow S. General method for the isolation of plasmid deoxyribonucleic acid. J Bacteriol. 1973 Nov;116(2):1064–1066. doi: 10.1128/jb.116.2.1064-1066.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hawley D. K., McClure W. R. The effect of a lambda repressor mutation on the activation of transcription initiation from the lambda PRM promoter. Cell. 1983 Feb;32(2):327–333. doi: 10.1016/0092-8674(83)90452-x. [DOI] [PubMed] [Google Scholar]
  7. Hochschild A., Irwin N., Ptashne M. Repressor structure and the mechanism of positive control. Cell. 1983 Feb;32(2):319–325. doi: 10.1016/0092-8674(83)90451-8. [DOI] [PubMed] [Google Scholar]
  8. Johnson A. D., Meyer B. J., Ptashne M. Interactions between DNA-bound repressors govern regulation by the lambda phage repressor. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5061–5065. doi: 10.1073/pnas.76.10.5061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Larson T. J., Schumacher G., Boos W. Identification of the glpT-encoded sn-glycerol-3-phosphate permease of Escherichia coli, an oligomeric integral membrane protein. J Bacteriol. 1982 Dec;152(3):1008–1021. doi: 10.1128/jb.152.3.1008-1021.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mandel M., Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970 Oct 14;53(1):159–162. doi: 10.1016/0022-2836(70)90051-3. [DOI] [PubMed] [Google Scholar]
  11. Müller-Hill B., Crapo L., Gilbert W. Mutants that make more lac repressor. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1259–1264. doi: 10.1073/pnas.59.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pratt C., Gallant J. A dominant constitutive phoR mutation in Escherichia coli. Genetics. 1972 Oct;72(2):217–226. doi: 10.1093/genetics/72.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ritzenthaler P., Blanco C., Mata-Gilsinger M. Genetic analysis of uxuR and exuR genes: evidence for ExuR and UxuR monomer repressors interactions. Mol Gen Genet. 1985;199(3):507–511. doi: 10.1007/BF00330766. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES