Skip to main content
Genetics logoLink to Genetics
. 1986 Mar;112(3):493–504. doi: 10.1093/genetics/112.3.493

Molecular and Cytogenetic Characterization of a Metallothionein Gene of Drosophila

Gustavo Maroni 1, Edward Otto 1, Donna Lastowski-Perry 1
PMCID: PMC1202760  PMID: 3007277

Abstract

A chromosomal DNA segment containing the metallothionein gene was isolated from a genomic library of Drosophila melanogaster using a previously characterized cDNA of this species as a probe. A segment of 1543 base pair (bp) was sequenced and found to include the cDNA sequence interrupted by one small intron. Several lines of evidence indicate that there is a single copy of the metallothionein gene (Mtn) in Drosophila; any other related genes, if they occur, must be sufficiently different that they are not detectable by our probe, even under hybridization conditions of reduced stringency. According to in situ hybridization and deletion mapping, Mtn is located in the right arm of the third chromosome in region 85E10-15. Within 300 bases upstream of the apparent site of transcription initiation, there are several short intervals very similar to the 12-bp segments considered to be responsible for metal regulation in mammalian systems.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benyajati C., Spoerel N., Haymerle H., Ashburner M. The messenger RNA for alcohol dehydrogenase in Drosophila melanogaster differs in its 5' end in different developmental stages. Cell. 1983 May;33(1):125–133. doi: 10.1016/0092-8674(83)90341-0. [DOI] [PubMed] [Google Scholar]
  2. Carter A. D., Felber B. K., Walling M. J., Jubier M. F., Schmidt C. J., Hamer D. H. Duplicated heavy metal control sequences of the mouse metallothionein-I gene. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7392–7396. doi: 10.1073/pnas.81.23.7392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Debec A., Mokdad R., Wegnez M. Metallothioneins and resistance to cadmium poisoning in Drosophila cells. Biochem Biophys Res Commun. 1985 Feb 28;127(1):143–152. doi: 10.1016/s0006-291x(85)80137-6. [DOI] [PubMed] [Google Scholar]
  4. Mills D. R., Kramer F. R. Structure-independent nucleotide sequence analysis. Proc Natl Acad Sci U S A. 1979 May;76(5):2232–2235. doi: 10.1073/pnas.76.5.2232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Staden R., McLachlan A. D. Codon preference and its use in identifying protein coding regions in long DNA sequences. Nucleic Acids Res. 1982 Jan 11;10(1):141–156. doi: 10.1093/nar/10.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Stuart G. W., Searle P. F., Chen H. Y., Brinster R. L., Palmiter R. D. A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7318–7322. doi: 10.1073/pnas.81.23.7318. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES