Skip to main content
Genetics logoLink to Genetics
. 1986 Jun;113(2):417–432. doi: 10.1093/genetics/113.2.417

Isolation and Characterization of a Mouse Y Chromosomal Repetitive Sequence

Yutaka Nishioka 1,2, Estelle Lamothe 1,2
PMCID: PMC1202847  PMID: 3721197

Abstract

The Y chromosome plays a dominant role in mammalian sex determination, and characterization of this chromosome is essential to understand the mechanism responsible for testicular differentiation. Male mouse genomic DNA fragments, cloned into pBR322, were screened for the presence of Bkm (a female snake satellite DNA)-related sequences, and we obtained a clone (AC11) having a DNA fragment from the mouse Y chromosome. In addition to a Bkm-related sequence, this fragment contained a Y chromosomal repetitive sequence. DNA isolated from the XX sex-reversed male genome produced a hybridization pattern indistinguishable to that obtained with normal female DNA, suggesting that the AC11 sequence is not contained within the Y chromosomal DNA present in the sex-reversed male genome. Based on the hybridization patterns against mouse Y chromosomal DNA, AC11 classified 16 inbred laboratory strains into two categories; those with the Mus musculus musculus type Y chromosome and those with the M.m. domesticus type Y chromosome. Three European subspecies of Mus musculus ( M.m. brevirostris, M.m. poschiavinus and M.m. praetextus) possessed the M.m. domesticus type Y chromosome, whereas the Japanese mouse, M.m. molossinus, had the M.m. musculus type Y chromosome. The survey was also extended to six other species that belong to the genus Mus, of which M. spretus and M. hortulanus showed significant amounts of AC11-related sequences in their Y chromosomes. The male-specific accumulation of AC11-related sequences was not found in M. caroli, M. cookii, M. pahari or M. platythrix . This marked difference among Mus species indicates that the amplification of AC11-related sequences in the mouse Y chromosome was a recent evolutionary event.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett K. L., Hill R. E., Pietras D. F., Woodworth-Gutai M., Kane-Haas C., Houston J. M., Heath J. K., Hastie N. D. Most highly repeated dispersed DNA families in the mouse genome. Mol Cell Biol. 1984 Aug;4(8):1561–1571. doi: 10.1128/mcb.4.8.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop C. E., Guellaen G., Geldwerth D., Voss R., Fellous M., Weissenbach J. Single-copy DNA sequences specific for the human Y chromosome. Nature. 1983 Jun 30;303(5920):831–832. doi: 10.1038/303831a0. [DOI] [PubMed] [Google Scholar]
  3. Doerfler W. DNA methylation and gene activity. Annu Rev Biochem. 1983;52:93–124. doi: 10.1146/annurev.bi.52.070183.000521. [DOI] [PubMed] [Google Scholar]
  4. Eicher E. M., Washburn L. L. Inherited sex reversal in mice: identification of a new primary sex-determining gene. J Exp Zool. 1983 Nov;228(2):297–304. doi: 10.1002/jez.1402280213. [DOI] [PubMed] [Google Scholar]
  5. Eicher E. M., Washburn L. L., Whitney J. B., 3rd, Morrow K. E. Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science. 1982 Aug 6;217(4559):535–537. doi: 10.1126/science.7089579. [DOI] [PubMed] [Google Scholar]
  6. Gropp A., Winking H., Zech L., Müller H. Robertsonian chromosomal variation and identification of metacentric chromosomes in feral mice. Chromosoma. 1972;39(3):265–288. doi: 10.1007/BF00290787. [DOI] [PubMed] [Google Scholar]
  7. Guellaen G., Casanova M., Bishop C., Geldwerth D., Andre G., Fellous M., Weissenbach J. Human XX males with Y single-copy DNA fragments. Nature. 1984 Jan 12;307(5947):172–173. doi: 10.1038/307172a0. [DOI] [PubMed] [Google Scholar]
  8. Lamar E. E., Palmer E. Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell. 1984 May;37(1):171–177. doi: 10.1016/0092-8674(84)90312-x. [DOI] [PubMed] [Google Scholar]
  9. Meunier-Rotival M., Soriano P., Cuny G., Strauss F., Bernardi G. Sequence organization and genomic distribution of the major family of interspersed repeats of mouse DNA. Proc Natl Acad Sci U S A. 1982 Jan;79(2):355–359. doi: 10.1073/pnas.79.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rice M. C., O'Brien S. J. Genetic variance of laboratory outbred Swiss mice. Nature. 1980 Jan 10;283(5743):157–161. doi: 10.1038/283157a0. [DOI] [PubMed] [Google Scholar]
  11. Singh L., Jones K. W. Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the x and an aberrant y chromosome. Cell. 1982 Feb;28(2):205–216. doi: 10.1016/0092-8674(82)90338-5. [DOI] [PubMed] [Google Scholar]
  12. Singh L., Phillips C., Jones K. W. The conserved nucleotide sequences of Bkm, which define Sxr in the mouse, are transcribed. Cell. 1984 Jan;36(1):111–120. doi: 10.1016/0092-8674(84)90079-5. [DOI] [PubMed] [Google Scholar]
  13. Singh L., Purdom I. F., Jones K. W. Sex chromosome associated satellite DNA: evolution and conservation. Chromosoma. 1980;79(2):137–157. doi: 10.1007/BF01175181. [DOI] [PubMed] [Google Scholar]
  14. Virgo N. S., Miller J. R. Hereditary vasopressin-resistant diabetes insipidus in SWV mice. Can J Physiol Pharmacol. 1974 Oct;52(5):995–1011. doi: 10.1139/y74-131. [DOI] [PubMed] [Google Scholar]
  15. White B. J., Tjio J. H. A mouse translocation with 38 and 39 chromosomes but normal N. F. Hereditas. 1967;58(3):284–296. doi: 10.1111/j.1601-5223.1967.tb02157.x. [DOI] [PubMed] [Google Scholar]
  16. Yonekawa H., Moriwaki K., Gotoh O., Miyashita N., Migita S., Bonhomme F., Hjorth J. P., Petras M. L., Tagashira Y. Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation. 1982;22(3):222–226. doi: 10.1111/j.1432-0436.1982.tb01255.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES