Skip to main content
Genetics logoLink to Genetics
. 1986 Jul;113(3):483–497. doi: 10.1093/genetics/113.3.483

Transitory Derepression and the Maintenance of Conjugative Plasmids

Peter D Lundquist 1, Bruce R Levin 1
PMCID: PMC1202851  PMID: 3015715

Abstract

It has been proposed that bacterial plasmids cannot be maintained by infectious transfer alone and that their persistence requires positive selection for plasmid-borne genes. To test this hypothesis, the population dynamics of two laboratory and five naturally occurring conjugative plasmids were examined in chemostat cultures of E. coli K-12. Both laboratory plasmids and three of the five wild plasmids failed to increase in frequency when introduced at low frequencies. However, two of the naturally occurring plasmids rapidly increased in frequency, and bacteria carrying them achieved dominance in the absence of selection for known plasmid-borne genes. Three hypotheses for the invasion and persistence of these two plasmids were examined. It is concluded that although these two extrachromsomal genetic elements are repressed for conjugative pili synthesis, as a consequence of high rates of transfer during periods of transitory derepression in newly formed transconjugants, they become established and are maintained by infectious transfer alone. The implications of these observations to the theory of plasmid maintenance and the evolution of repressible conjugative pili synthesis are discussed.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caugant D. A., Levin B. R., Selander R. K. Genetic diversity and temporal variation in the E. coli population of a human host. Genetics. 1981 Jul;98(3):467–490. doi: 10.1093/genetics/98.3.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cullum J., Collins J. F., Broda P. The spread of plasmids in model populations of Escherichia coli K12. Plasmid. 1978 Sep;1(4):545–556. doi: 10.1016/0147-619x(78)90011-2. [DOI] [PubMed] [Google Scholar]
  4. Mason T. G., Richardson G. Escherichia coli and the human gut: some ecological considerations. J Appl Bacteriol. 1981 Aug;51(1):1–16. doi: 10.1111/j.1365-2672.1981.tb00903.x. [DOI] [PubMed] [Google Scholar]
  5. Meyers J. A., Sanchez D., Elwell L. P., Falkow S. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J Bacteriol. 1976 Sep;127(3):1529–1537. doi: 10.1128/jb.127.3.1529-1537.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Stewart F. M., Levin B. R. The Population Biology of Bacterial Plasmids: A PRIORI Conditions for the Existence of Conjugationally Transmitted Factors. Genetics. 1977 Oct;87(2):209–228. doi: 10.1093/genetics/87.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Taylor D. N., Wachsmuth I. K., Shangkuan Y. H., Schmidt E. V., Barrett T. J., Schrader J. S., Scherach C. S., McGee H. B., Feldman R. A., Brenner D. J. Salmonellosis associated with marijuana: a multistate outbreak traced by plasmid fingerprinting. N Engl J Med. 1982 May 27;306(21):1249–1253. doi: 10.1056/NEJM198205273062101. [DOI] [PubMed] [Google Scholar]
  8. WATANABE T. EPISOME-MEDIATED TRANSFER OF DRUG RESISTANCE IN ENTEROBACTERIACEAE. VI. HIGH-FREQUENCY RESISTANCE TRANSFER SYSTEM IN ESCHERICHIA COLI. J Bacteriol. 1963 Apr;85:788–794. doi: 10.1128/jb.85.4.788-794.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES