Skip to main content
Genetics logoLink to Genetics
. 1986 Jul;113(3):499–515. doi: 10.1093/genetics/113.3.499

Interaction of DNA Polymerase III γ and β Subunits IN VIVO in SALMONELLA TYPHIMURIUM

Joyce Engstrom 1, Annette Wong 1, Russell Maurer 1
PMCID: PMC1202852  PMID: 3015716

Abstract

We show that temperature-sensitive mutations in dnaZ, the gene for the γ subunit of DNA polymerase III holoenzyme, can be suppressed by mutations in the dnaN gene, which encodes the β subunit. These results support a direct physical interaction of these two subunits during polymerase assembly or function. The suppressor phenotype is also sensitive to modulation by the dnaA genotype. Since dnaA is organized in an operon with dnaN, and dnaA is a regulatory gene of this operon, we propose that the dnaA effect on suppression can best be explained by modulation of suppressor dnaN levels.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atlung T., Clausen E. S., Hansen F. G. Autoregulation of the dnaA gene of Escherichia coli K12. Mol Gen Genet. 1985;200(3):442–450. doi: 10.1007/BF00425729. [DOI] [PubMed] [Google Scholar]
  2. Blinkowa A., Haldenwang W. G., Ramsey J. A., Henson J. M., Mullin D. A., Walker J. R. Physiological properties of cold-sensitive suppressor mutations of a temperature-sensitive dnaZ mutant of Escherichia coli. J Bacteriol. 1983 Jan;153(1):66–75. doi: 10.1128/jb.153.1.66-75.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Botstein D., Maurer R. Genetic approaches to the analysis of microbial development. Annu Rev Genet. 1982;16:61–83. doi: 10.1146/annurev.ge.16.120182.000425. [DOI] [PubMed] [Google Scholar]
  4. Braun R. E., O'Day K., Wright A. Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell. 1985 Jan;40(1):159–169. doi: 10.1016/0092-8674(85)90319-8. [DOI] [PubMed] [Google Scholar]
  5. Ebel-Tsipis J., Botstein D., Fox M. S. Generalized transduction by phage P22 in Salmonella typhimurium. I. Molecular origin of transducing DNA. J Mol Biol. 1972 Nov 14;71(2):433–448. doi: 10.1016/0022-2836(72)90361-0. [DOI] [PubMed] [Google Scholar]
  6. Fay P. J., Johanson K. O., McHenry C. S., Bambara R. A. Size classes of products synthesized processively by DNA polymerase III and DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem. 1981 Jan 25;256(2):976–983. [PubMed] [Google Scholar]
  7. Fay P. J., Johanson K. O., McHenry C. S., Bambara R. A. Size classes of products synthesized processively by two subassemblies of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem. 1982 May 25;257(10):5692–5699. [PubMed] [Google Scholar]
  8. Hübscher U., Kornberg A. The dnaZ protein, the gamma subunit of DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem. 1980 Dec 25;255(24):11698–11703. [PubMed] [Google Scholar]
  9. Johanson K. O., McHenry C. S. Purification and characterization of the beta subunit of the DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem. 1980 Nov 25;255(22):10984–10990. [PubMed] [Google Scholar]
  10. Johanson K. O., McHenry C. S. The beta subunit of the DNA polymerase III holoenzyme becomes inaccessible to antibody after formation of an initiation complex with primed DNA. J Biol Chem. 1982 Oct 25;257(20):12310–12315. [PubMed] [Google Scholar]
  11. Karn J., Brenner S., Barnett L., Cesareni G. Novel bacteriophage lambda cloning vector. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5172–5176. doi: 10.1073/pnas.77.9.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kodaira M., Biswas S. B., Kornberg A. The dnaX gene encodes the DNA polymerase III holoenzyme tau subunit, precursor of the gamma subunit, the dnaZ gene product. Mol Gen Genet. 1983;192(1-2):80–86. doi: 10.1007/BF00327650. [DOI] [PubMed] [Google Scholar]
  13. Maurer R., Osmond B. C., Shekhtman E., Wong A., Botstein D. Functional interchangeability of DNA replication genes in Salmonella typhimurium and Escherichia coli demonstrated by a general complementation procedure. Genetics. 1984 Sep;108(1):1–23. doi: 10.1093/genetics/108.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rowen L., Kobori J. A., Scherer S. Cloning of bacterial DNA replication genes in bacteriophage lambda. Mol Gen Genet. 1982;187(3):501–509. doi: 10.1007/BF00332635. [DOI] [PubMed] [Google Scholar]
  15. Sako T., Sakakibara Y. Coordinate expression of Escherichia coli dnaA and dnaN genes. Mol Gen Genet. 1980;179(3):521–526. doi: 10.1007/BF00271741. [DOI] [PubMed] [Google Scholar]
  16. Vieira J., Messing J. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene. 1982 Oct;19(3):259–268. doi: 10.1016/0378-1119(82)90015-4. [DOI] [PubMed] [Google Scholar]
  17. Vogelstein B., Gillespie D. Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A. 1979 Feb;76(2):615–619. doi: 10.1073/pnas.76.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wickner W., Kornberg A. DNA polymerase 3 star requires ATP to start synthesis on a primed DNA. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3679–3683. doi: 10.1073/pnas.70.12.3679. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES