Abstract
From 1981 to 1983, 15,097 X-chromosomes were genetically extracted from a number of North American populations of D. melanogaster and were electrophoretically screened for rare mobility and activity variants of glucose-6-phosphate dehydrogenase (G6PD). Overall, 13 rare variants were recovered for a frequency of about 10-3. Eleven variants affect electrophoretic mobility and are apparently structural, and two variants exhibit low G6PD activity. One low activity variant is closely associated with a P-element insertion at 18D12-13—all of the variants were subjected to the previously described genetic scheme used to identify relative in vivo activity differences between the two common electrophoretic variants associated with the global polymorphism. Most of the rare variants exhibit apparent in vivo activities that are similar to one or the other of the common variants, and these specific rare variants appear to be geographically widespread. Several variants have significantly reduced function. All of the variants were measured for larval specific activity for G6PD as a first measure of in vitro activity. It appears that specific activity alone is not a sufficient predictor for G6PD in vivo function.
Full Text
The Full Text of this article is available as a PDF (1,009.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bewley G. C., Lucchesi J. G. Lethal effects of low and "null" activity alleles of 6-phosphogluconate dehydrogenase in Drosophila melanogaster. Genetics. 1975 Mar;79(3):451–457. doi: 10.1093/genetics/79.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown A. J. Physiological correlates of an enzyme polymorphism. Nature. 1977 Oct 27;269(5631):803–804. doi: 10.1038/269803a0. [DOI] [PubMed] [Google Scholar]
- DiMichele L., Powers D. A. LDH-B genotype-specific hatching times of Fundulus heteroclitus embryos. Nature. 1982 Apr 8;296(5857):563–564. doi: 10.1038/296563a0. [DOI] [PubMed] [Google Scholar]
- DiMichele L., Powers D. A. Physiological basis for swimming endurance differences between LDH-B genotypes of Fundulus heteroclitus. Science. 1982 May 28;216(4549):1014–1016. doi: 10.1126/science.7079747. [DOI] [PubMed] [Google Scholar]
- Dykhuizen D. E., de Framond J., Hartl D. L. Selective neutrality of glucose-6-phosphate dehydrogenase allozymes in Escherichia coli. Mol Biol Evol. 1984 Feb;1(2):162–170. doi: 10.1093/oxfordjournals.molbev.a040309. [DOI] [PubMed] [Google Scholar]
- Dykhuizen D., Hartl D. L. Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics. 1980 Dec;96(4):801–817. doi: 10.1093/genetics/96.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganguly R., Ganguly N., Manning J. E. Isolation and characterization of the glucose-6-phosphate dehydrogenase gene of Drosophila melanogaster. Gene. 1985;35(1-2):91–101. doi: 10.1016/0378-1119(85)90161-1. [DOI] [PubMed] [Google Scholar]
- Hartl D. L., Dykhuizen D. E., Dean A. M. Limits of adaptation: the evolution of selective neutrality. Genetics. 1985 Nov;111(3):655–674. doi: 10.1093/genetics/111.3.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilbish T. J., Deaton L. E., Koehn R. K. Effect of an allozyme polymorphism on regulation of cell volume. Nature. 1982 Aug 12;298(5875):688–689. doi: 10.1038/298688a0. [DOI] [PubMed] [Google Scholar]
- Hilbish T. J., Koehn R. K. Dominance in physiological phenotypes and fitness at an enzyme locus. Science. 1985 Jul 5;229(4708):52–54. doi: 10.1126/science.4012310. [DOI] [PubMed] [Google Scholar]
- Langley C. H., Voelker R. A., Brown A. J., Ohnishi S., Dickson B., Montgomery E. Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster. Genetics. 1981 Sep;99(1):151–156. doi: 10.1093/genetics/99.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurie-Ahlberg C. C., Maroni G., Bewley G. C., Lucchesi J. C., Weir B. S. Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1073–1077. doi: 10.1073/pnas.77.2.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukai T., Cockerham C. C. Spontaneous mutation rates at enzyme loci in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2514–2517. doi: 10.1073/pnas.74.6.2514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oakeshott J. G., Chambers G. K., Gibson J. B., Eanes W. F., Willcocks D. A. Geographic variation in G6pd and Pgd allele frequencies in Drosophila melanogaster. Heredity (Edinb) 1983 Feb;50(Pt 1):67–72. doi: 10.1038/hdy.1983.7. [DOI] [PubMed] [Google Scholar]
- Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
- Slatkin M. Estimating levels of gene flow in natural populations. Genetics. 1981 Oct;99(2):323–335. doi: 10.1093/genetics/99.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart B. R., Merriam J. R. Segmental aneuploidy and enzyme activity as a method for cytogenetic localization in drosophila melanogaster. Genetics. 1974 Feb;76(2):301–309. doi: 10.1093/genetics/76.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voelker R. A., Langley C. H., Brown A. J., Ohnishi S., Dickson B., Montgomery E., Smith S. C. Enzyme null alleles in natural populations of Drosophila melanogaster: Frequencies in a North Carolina population. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1091–1095. doi: 10.1073/pnas.77.2.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]