Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1964 May;91(2):307–317. doi: 10.1042/bj0910307

The effect of adrenalectomy on the metabolism of the mammary glands of lactating rats

A L Greenbaum 1, F J Darby 1
PMCID: PMC1202887  PMID: 4378736

Full text

PDF
307

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAHAM S., CADY P., CHAIKOFF I. L. Effect of insulin in vitro in pathways of glucose utilization, other than Embden-Meyerhof, in rat mammary gland. J Biol Chem. 1957 Feb;224(2):955–962. [PubMed] [Google Scholar]
  2. ABRAHAM S., CADY P., CHAIKOFF I. L. Glucose and acetate metabolism and lipogensis in mammary glands of hypophysectomized rats in which lactation was hormonally induced. Endocrinology. 1960 Feb;66:280–288. doi: 10.1210/endo-66-2-280. [DOI] [PubMed] [Google Scholar]
  3. ABRAHAM S., CHAIKOFF I. L. Glycolytic pathways and lipogenesis in mammary glands of lactating and nonlactating normal rats. J Biol Chem. 1959 Sep;234:2246–2253. [PubMed] [Google Scholar]
  4. ABRAHAM S., FITCH W. M., CHAIKOFF I. L. Mannose metabolism and the demonstration of mannokinase and phosphomannoisomerase activities in the lactating rat mammary gland. Arch Biochem Biophys. 1961 May;93:278–282. doi: 10.1016/0003-9861(61)90262-4. [DOI] [PubMed] [Google Scholar]
  5. ABRAHAM S., HIRSCH P. F., CHAIKOFF I. L. The quantitative significance of glycolysis and non-glycolysis in glucose utilization by rat mammary gland. J Biol Chem. 1954 Nov;211(1):31–38. [PubMed] [Google Scholar]
  6. ABRAHAM S., MATTHES K. J., CHAIKOFF I. L. Effect of biotin and avidin on conversion of acetate to fatty acids and acetoacetate by preparations from rat liver and lactating rat mammary gland. Biochim Biophys Acta. 1961 Jan 1;46:197–198. doi: 10.1016/0006-3002(61)90667-9. [DOI] [PubMed] [Google Scholar]
  7. ANDERSON R. R., TURNER C. W. Effect of adrenalectomy and corticoid replacement on lactational performance in rats. Proc Soc Exp Biol Med. 1962 Jun;110:349–352. doi: 10.3181/00379727-110-27514. [DOI] [PubMed] [Google Scholar]
  8. ASHMORE J., CAHILL G. F., Jr, HASTINGS A. B. Effect of hormones on alternate pathways of glucose utilization in isolated tissues. Recent Prog Horm Res. 1960;16:547–577. [PubMed] [Google Scholar]
  9. ASHMORE J. Physiology of glucose-6-phosphate utilization: role of adrenal steroids. Rev Can Biol. 1959 Sep;18:229–244. [PubMed] [Google Scholar]
  10. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  11. BOWEN H. F., PERRY W. F. Fatty acid utilization by adrenalectomized rats. Am J Physiol. 1956 Aug;186(2):190–192. doi: 10.1152/ajplegacy.1956.186.2.190. [DOI] [PubMed] [Google Scholar]
  12. COWIE A. T. Influence on the replacement value of some adrenal-cortex steroids of dietary sodium and synergism of steroids in lactating adrenalectomized rats. Endocrinology. 1952 Sep;51(3):217–225. doi: 10.1210/endo-51-3-217. [DOI] [PubMed] [Google Scholar]
  13. COWIE A. T., TINDAL J. S. Maintenance of lactation in adrenalectomized rats with aldosterone and 9 alpha-halo derivatives of hydrocortisone. Endocrinology. 1955 May;56(5):612–614. doi: 10.1210/endo-56-5-612. [DOI] [PubMed] [Google Scholar]
  14. DILS R., POPJAK G. Biosynthesis of fatty acids in cell-free preparations. 5. Synthesis of fatty acids from acetate in extracts of lactating-rat mammary gland. Biochem J. 1962 Apr;83:41–51. doi: 10.1042/bj0830041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. FOLLEY S. J., GREENBAUM A. L. Insulin and metabolism of fatty acids. Br Med Bull. 1960 Sep;16:228–232. doi: 10.1093/oxfordjournals.bmb.a069840. [DOI] [PubMed] [Google Scholar]
  16. FREEDLAND R. A., BARNES J. K. The effect of adrenalectomy on the adaptation of glucose 6-phosphate-metabolizing enzymes in the liver. J Biol Chem. 1963 Jun;238:1915–1918. [PubMed] [Google Scholar]
  17. Folley S. J., French T. H. The intermediary metabolism of the mammary gland. 1. Respiration of lactating mammary gland slices in presence of carbohydrates. Biochem J. 1949;45(2):117–125. [PMC free article] [PubMed] [Google Scholar]
  18. GALLAGHER C. H. The mechanism of action of hydrocortisone on mitochondrial metabolism. Biochem J. 1960 Jan;74:38–43. doi: 10.1042/bj0740038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. GANGULY J. Studies on the mechanism of fatty acid synthesis. VII. Biosynthesis of fatty acids from malonyl CoA. Biochim Biophys Acta. 1960 May 6;40:110–118. doi: 10.1016/0006-3002(60)91320-2. [DOI] [PubMed] [Google Scholar]
  20. GLOCK G. E., MCLEAN P., WHITEHEAD J. K. Pathways of glucose utilization in the mammary gland of the rat. Biochim Biophys Acta. 1956 Mar;19(3):546–547. doi: 10.1016/0006-3002(56)90480-2. [DOI] [PubMed] [Google Scholar]
  21. GLOCK G. E., McLEAN P. Levels of enzymes of the direct oxidative pathway of carbohydrate metabolism in the mammary gland of the rat. Biochim Biophys Acta. 1953 Dec;12(4):590–590. doi: 10.1016/0006-3002(53)90195-4. [DOI] [PubMed] [Google Scholar]
  22. GLOCK G. E., McLEAN P. Pathways of glucose utilization in mammary tissue. Proc R Soc Lond B Biol Sci. 1958 Dec 17;149(936):354–362. doi: 10.1098/rspb.1958.0075. [DOI] [PubMed] [Google Scholar]
  23. HECHTER O., LESTER G. Cell permeability and hormone action. Recent Prog Horm Res. 1960;16:139–186. [PubMed] [Google Scholar]
  24. HIRSCH P. F., BARUCH H., CHAIKOFF I. L. The relation of glucose oxidation to lipogenesis in mammary tissue. J Biol Chem. 1954 Oct;210(2):785–797. [PubMed] [Google Scholar]
  25. HUGGINS C., YAO F. O. Influence of hormones on liver. I. Effects of steroids and thyroxine on pyridine nucleotide-linked dehydrogenases. J Exp Med. 1959 Dec 1;110:899–919. doi: 10.1084/jem.110.6.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. KATZ J., WOOD H. G. The use of glucose-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem. 1960 Aug;235:2165–2177. [PubMed] [Google Scholar]
  27. LANGDON R. G. The biosynthesis of fatty acids in rat liver. J Biol Chem. 1957 Jun;226(2):615–629. [PubMed] [Google Scholar]
  28. McLEAN P. Carbohydrate metabolism of mammary tissue. I. Pathways of glucose catabolism in the mammary gland. Biochim Biophys Acta. 1958 Nov;30(2):303–315. doi: 10.1016/0006-3002(58)90055-6. [DOI] [PubMed] [Google Scholar]
  29. McLEAN P. Carbohydrate metabolism of mammary tissue. II. Levels of oxidised and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in the rat mammary gland. Biochim Biophys Acta. 1958 Nov;30(2):316–324. doi: 10.1016/0006-3002(58)90056-8. [DOI] [PubMed] [Google Scholar]
  30. PEETERS G., DEBACKERE M., SIERENS R. Etude du cycle oxydatif des hexosemonophosphates dans le tissu mammaire par la méthode de chromatographie sur papier. Arch Int Physiol Biochim. 1957 Apr;65(2):324–336. doi: 10.3109/13813455709067038. [DOI] [PubMed] [Google Scholar]
  31. PERRY W. F., BOWEN H. F. Effect of adrenalectomy on the incorporation of acetate into fatty acids, cholesterol and acetoacetic acid by rat liver slices. Am J Physiol. 1956 Jan;184(1):59–62. doi: 10.1152/ajplegacy.1955.184.1.59. [DOI] [PubMed] [Google Scholar]
  32. SIPERSTEIN M. D., FAGAN V. M. Studies on the relationship between glucose oxidation and intermediary metabolism. I. The influence of glycolysis on the synthesis of cholesterol and fatty acid in normal liver. J Clin Invest. 1958 Aug;37(8):1185–1195. doi: 10.1172/JCI103708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. SLATER T. F., SAWYER B. A colorimetric method for estimating the pyridine nucleotide content of small amounts of animal tissue. Nature. 1962 Feb 3;193:454–456. doi: 10.1038/193454a0. [DOI] [PubMed] [Google Scholar]
  34. SLATER T. F. Studies on mammary involution. I. Chemical changes. Arch Int Physiol Biochim. 1962 Mar;70:167–178. doi: 10.3109/13813456209092850. [DOI] [PubMed] [Google Scholar]
  35. STRICKLAND E. H. Respiration and phosphorylation in liver mitochondria and homogenates from adrenalectomized rats. Arch Biochem Biophys. 1963 Jan;100:110–118. doi: 10.1016/0003-9861(63)90041-9. [DOI] [PubMed] [Google Scholar]
  36. WAKIL S. J. Enzymatic synthesis of fatty acids. Comp Biochem Physiol. 1962 Oct;4:123–158. doi: 10.1016/0010-406x(62)90002-6. [DOI] [PubMed] [Google Scholar]
  37. WEBER G., BANERJEE G., BRONSTEIN S. B. Role of enzymes in homeostasis. III. Selective induction of increases of liver enzymes involved in carbohydrate metabolism. J Biol Chem. 1961 Dec;236:3106–3111. [PubMed] [Google Scholar]
  38. WILLMER J. S. Changes in hepatic enzyme levels after adrenalectomy. I. Phosphorylase, phosphoglucomutase, and phosphoglucoseisomerase. Can J Biochem Physiol. 1960 Oct;38:1095–1104. [PubMed] [Google Scholar]
  39. WILLMER J. S. Changes in hepatic enzyme levels after adrenalectomy. II. Glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase. Can J Biochem Physiol. 1960 Dec;38:1449–1456. [PubMed] [Google Scholar]
  40. WILLMER J. S. The influence of adrenalectomy upon the activity of the hexosemonophosphate shunt in the livers and mammary glands of lactating rats. Can J Biochem Physiol. 1960 Nov;38:1265–1273. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES