Skip to main content
Genetics logoLink to Genetics
. 1986 Sep;114(1):137–144. doi: 10.1093/genetics/114.1.137

Glucose Repression of Amylase Gene Expression in DROSOPHILA MELANOGASTER

Bernhard F Benkel 1, Donal A Hickey 1
PMCID: PMC1202926  PMID: 17246342

Abstract

We have previously shown that dietary glucose can reduce amylase activity in both adults and larvae of Drosophila; this reduction in enzyme activity reflects a reduction in the quantity of amylase protein, rather than an inhibition of enzyme activity. Here, we report that we have now defined conditions in which the repressive effect of glucose can be greater than 100-fold. Moreover, this repression is partially counteracted by the addition of exogenous cyclic AMP. We also show that there is a direct correlation between changes in amylase activity and changes in the amount of translatable mRNA as assayed in microinjected Xenopus oocytes. This means that the glucose repression is occurring at a pretranslational stage.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham I., Doane W. W. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4446–4450. doi: 10.1073/pnas.75.9.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beier D. R., Young E. T. Characterization of a regulatory region upstream of the ADR2 locus of S. cerevisiae. Nature. 1982 Dec 23;300(5894):724–728. doi: 10.1038/300724a0. [DOI] [PubMed] [Google Scholar]
  3. Doane W. W., Treat-Clemons L. G., Gemmill R. M., Levy J. N., Hawley S. A., Buchberg A. M., Paigen K. Genetic mechanism for tissue-specific control of alpha-amylase expression in Drosophila melanogaster. Isozymes Curr Top Biol Med Res. 1983;9:63–90. [PubMed] [Google Scholar]
  4. Federoff H. J., Eccleshall T. R., Marmur J. Carbon catabolite repression of maltase synthesis in Saccharomyces carlsbergensis. J Bacteriol. 1983 Oct;156(1):301–307. doi: 10.1128/jb.156.1.301-307.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geer B. W., Laurie-Ahlberg C. C. Genetic variation in the dietary sucrose modulation of enzyme activities in Drosophila melanogaster. Genet Res. 1984 Jun;43(3):307–321. doi: 10.1017/s0016672300026094. [DOI] [PubMed] [Google Scholar]
  6. Gurdon J. B., Lane C. D., Woodland H. R., Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature. 1971 Sep 17;233(5316):177–182. doi: 10.1038/233177a0. [DOI] [PubMed] [Google Scholar]
  7. Haj-Ahmad Y., Hickey D. A. A molecular explanation of frequency-dependent selection in Drosophila. Nature. 1982 Sep 23;299(5881):350–352. doi: 10.1038/299350a0. [DOI] [PubMed] [Google Scholar]
  8. Hashimoto S., Schmid W., Schütz G. Transcriptional activation of the rat liver tyrosine aminotransferase gene by cAMP. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6637–6641. doi: 10.1073/pnas.81.21.6637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hickey D. A., Benkel B. Regulation of amylase activity in drosophila melanogaster: effects of dietary carbohydrate. Biochem Genet. 1982 Dec;20(11-12):1117–1129. doi: 10.1007/BF00498936. [DOI] [PubMed] [Google Scholar]
  10. Hickey D. A. Regulation of amylase activity in Drosophila melanogaster: variation in the number of enzyme molecules produced by different amylase genotypes. Biochem Genet. 1981 Aug;19(7-8):783–796. doi: 10.1007/BF00484009. [DOI] [PubMed] [Google Scholar]
  11. Levy J. N., Gemmill R. M., Doane W. W. Molecular cloning of alpha-amylase genes from Drosophila melanogaster. II. Clone organization and verification. Genetics. 1985 Jun;110(2):313–324. doi: 10.1093/genetics/110.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pastan I., Adhya S. Cyclic adenosine 5'-monophosphate in Escherichia coli. Bacteriol Rev. 1976 Sep;40(3):527–551. doi: 10.1128/br.40.3.527-551.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reynolds G. A., Basu S. K., Osborne T. F., Chin D. J., Gil G., Brown M. S., Goldstein J. L., Luskey K. L. HMG CoA reductase: a negatively regulated gene with unusual promoter and 5' untranslated regions. Cell. 1984 Aug;38(1):275–285. doi: 10.1016/0092-8674(84)90549-x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES