Skip to main content
Genetics logoLink to Genetics
. 1986 Sep;114(1):247–258. doi: 10.1093/genetics/114.1.247

Genetic Analysis of Liver Neuraminidase Isozymes in RATTUS NORVEGICUS: Independent Control of Neu-1 and Neu-2 Phenotypes

Paul B Samollow 1,2, John L Vandeberg 1,2, Allen L Ford 1,2, Heinz W Kunz 1,2, Thomas J Gill III 1,2
PMCID: PMC1202934  PMID: 3770467

Abstract

Two recently identified isozymes of neuraminidase in rat liver were examined for transmission patterns and linkage relationships, and for variation among inbred strains. The isozymes, designated neuraminidase-1 (NEU-1) and neuraminidase-2 (NEU-2), exhibited no electrophoretic mobility variants among the 22 inbred strains examined, but did possess striking interstrain variation in activity phenotypes on electrophoretic gels. The results of a backcross analysis involving the KGH and ACP strains revealed that NEU-1 and NEU-2 phenotypes are independently controlled, each by a single autosomal locus with additively acting alleles. The two loci are unlinked to one another, but the gene controlling NEU-1 is tightly linked to RT1, the rat major histocompatibility complex. This gene is almost certainly identical to Neu-1, a gene identified previously through its effect on "total" activity levels of liver neuraminidase as determined by fluorometric assay of tissue homogenates. NEU-2 and the gene controlling its phenotype were not detected by the fluorometric technique. We designate the genes controlling the NEU-1 and NEU-2 phenotypes as Neu-1 and Neu-2, respectively. Data from this and other studies place Neu-1 between Glo-1 and dw-3. The location of Neu-2 is unknown.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chigorno V., Cardace G., Pitto M., Sonnino S., Ghidoni R., Tettamanti G. A radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in cultured human fibroblasts. Anal Biochem. 1986 Mar;153(2):283–294. doi: 10.1016/0003-2697(86)90094-1. [DOI] [PubMed] [Google Scholar]
  2. Hoogeveen A. T., Verheijen F. W., d'Azzo A., Galjaard H. Genetic heterogeneity in human neuraminidase deficiency. Nature. 1980 Jun 12;285(5765):500–502. doi: 10.1038/285500a0. [DOI] [PubMed] [Google Scholar]
  3. Kato T., Okada S., Yutaka T., Inui K., Yabuuchi H., Chiyo H., Furuyama J. I., Okada Y. beta-Galactosidase deficient-type mucolipidosis: a complementation study of neuraminidase in somatic cell hybrids. Biochem Biophys Res Commun. 1979 Nov 14;91(1):114–117. doi: 10.1016/0006-291x(79)90590-4. [DOI] [PubMed] [Google Scholar]
  4. Lowden J. A., O'Brien J. S. Sialidosis: a review of human neuraminidase deficiency. Am J Hum Genet. 1979 Jan;31(1):1–18. [PMC free article] [PubMed] [Google Scholar]
  5. Mueller O. T., Henry W. M., Haley L. L., Byers M. G., Eddy R. L., Shows T. B. Sialidosis and galactosialidosis: chromosomal assignment of two genes associated with neuraminidase-deficiency disorders. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1817–1821. doi: 10.1073/pnas.83.6.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mueller O. T., Shows T. B. Human beta-galactosidase and alpha-neuraminidase deficient mucolipidosis: genetic complementation analysis of the neuraminidase deficiency. Hum Genet. 1982;60(2):158–162. doi: 10.1007/BF00569704. [DOI] [PubMed] [Google Scholar]
  7. Potier M., Mameli L., Bélisle M., Dallaire L., Melançon S. B. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal Biochem. 1979 Apr 15;94(2):287–296. doi: 10.1016/0003-2697(79)90362-2. [DOI] [PubMed] [Google Scholar]
  8. Schraven J., Cáp C., Nowoczek G., Sandhoff K. A radiometric assay for sialidase acting on ganglioside GD1a. Anal Biochem. 1977 Apr;78(2):333–339. doi: 10.1016/0003-2697(77)90094-x. [DOI] [PubMed] [Google Scholar]
  9. Spaltro J., Alhadeff J. A. Solubilization, stabilization and isoelectric focusing of human liver neuraminidase activity. Biochim Biophys Acta. 1984 Jul 30;800(2):159–165. doi: 10.1016/0304-4165(84)90055-2. [DOI] [PubMed] [Google Scholar]
  10. Stolc V., Kunz H. W., Gill T. J., 3rd The linkage of glyoxylase-I to the major histocompatibility complex in the rat. J Immunol. 1980 Sep;125(3):1167–1170. [PubMed] [Google Scholar]
  11. Swallow D. M., Hoogeveen A. T., Verheijen F. W., Galjaard H. Complementation analysis of human sialidase deficiency using natural substrates. Ann Hum Genet. 1981 May;45(Pt 2):105–112. doi: 10.1111/j.1469-1809.1981.tb00311.x. [DOI] [PubMed] [Google Scholar]
  12. Tulsiani D. R., Carubelli R. Studies on the soluble and lysosomal neuraminidases of rat liver. J Biol Chem. 1970 Apr 10;245(7):1821–1827. [PubMed] [Google Scholar]
  13. Venerando B., Tettamanti G., Cestaro B., Zambotti V. Studies on brain cytosol neuraminadase. I. Isolation and partial characterization of two forms of the enzyme from pig brain. Biochim Biophys Acta. 1975 Oct 22;403(2):461–472. doi: 10.1016/0005-2744(75)90074-1. [DOI] [PubMed] [Google Scholar]
  14. Verheijen F. W., Janse H. C., van Diggelen O. P., Bakker H. D., Loonen M. C., Durand P., Galjaard H. Two genetically different MU-NANA neuraminidases in human leucocytes. Biochem Biophys Res Commun. 1983 Dec 16;117(2):470–478. doi: 10.1016/0006-291x(83)91224-x. [DOI] [PubMed] [Google Scholar]
  15. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  16. Womack J. E., Yan D. L., Potier M. Gene for neuraminidase activity on mouse chromosome 17 near h-2: pleiotropic effects on multiple hydrolases. Science. 1981 Apr 3;212(4490):63–65. doi: 10.1126/science.7209520. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES