Skip to main content
Genetics logoLink to Genetics
. 1986 Nov;114(3):875–884. doi: 10.1093/genetics/114.3.875

Nonrandom Association between Structural Amy and Regulatory map Variants in DROSOPHILA MELANOGASTER

A J Klarenberg 1,2, W Scharloo 1,2
PMCID: PMC1203018  PMID: 17246355

Abstract

Populations of Drosophila melanogaster were investigated for variation in structural Amy genes, coding for different electrophoretic variants, and regulatory genes that determine the tissue-specific production patterns of α-amylase in the midguts of adults and larvae. Analysis of strains homozygous for second chromosomes extracted from three cage populations of different geographical origin revealed a consistent nonrandom association between Amy and midgut activity pattern (map) variants of α-amylase in adults and third-instar larvae. The origin and maintenance of the linkage disequilibrium between Amy and map genes are discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Doane W. W., Treat-Clemons L. G., Gemmill R. M., Levy J. N., Hawley S. A., Buchberg A. M., Paigen K. Genetic mechanism for tissue-specific control of alpha-amylase expression in Drosophila melanogaster. Isozymes Curr Top Biol Med Res. 1983;9:63–90. [PubMed] [Google Scholar]
  2. Hoorn A. J., Scharloo W. Functional significance of amylase polymorphism in Drosophila melanogaster. III. Ontogeny of amylase and some alpha-glucosidases. Biochem Genet. 1980 Feb;18(1-2):51–63. doi: 10.1007/BF00504359. [DOI] [PubMed] [Google Scholar]
  3. Levy J. N., Gemmill R. M., Doane W. W. Molecular cloning of alpha-amylase genes from Drosophila melanogaster. II. Clone organization and verification. Genetics. 1985 Jun;110(2):313–324. doi: 10.1093/genetics/110.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Muki T., Watanabe T. K., Yamaguchi O. The genetic structure of natural populations of Drosophila melanogaster. XII. Linkage disequilibrium in a large local population. Genetics. 1974 Aug;77(4):771–793. doi: 10.1093/genetics/77.4.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Nei M., Li W. H. Non-random association between electromorphs and inversion chromosomes in finite populations. Genet Res. 1980 Feb;35(1):65–83. doi: 10.1017/s001667230001394x. [DOI] [PubMed] [Google Scholar]
  6. Paigen K. Acid hydrolases as models of genetic control. Annu Rev Genet. 1979;13:417–466. doi: 10.1146/annurev.ge.13.120179.002221. [DOI] [PubMed] [Google Scholar]
  7. Powell J. R., Lichtenfels J. M. Population genetics of Drosophila amylase. I. Genetic control of tissue-specific expression in D. pseudoobscura. Genetics. 1979 Jun;92(2):603–612. doi: 10.1093/genetics/92.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Prakash S., Lewontin R. C. A molecular approach to the study of genic heterozygosity in natural populations. 3. Direct evidence of coadaptation in gene arrangements of Drosophila. Proc Natl Acad Sci U S A. 1968 Feb;59(2):398–405. doi: 10.1073/pnas.59.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Thomson G. The effect of a selected locus on linked neutral loci. Genetics. 1977 Apr;85(4):753–788. doi: 10.1093/genetics/85.4.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. van Delden W., Kamping A., van Dijk H. Selection at the alcoholdehydrogenase locus in Drosophila melanogaster. Experientia. 1975 Apr 15;31(4):418–420. doi: 10.1007/BF02026351. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES