Abstract
This paper presents the results of a single generation study of the transmission genetics of mitochondrial DNA in the field cricket Gryllus firmus. In this species, individuals heteroplasmic for at least two different-sized mitochondrial genomes can be collected easily from natural populations. The frequencies of mtDNA size variants in heteroplasmic females and samples of their offspring were estimated by densitometry of autoradiographs. The variance in mitochondrial genotype frequencies among the offspring of heteroplasmic females indicates that, through genetic drift, fixation would take several hundred animal generations. Differences between the observations and data on mtDNA transmission in yeast and cows are discussed in light of the differences in organelle sampling regime and early developmental events in these species. Our data also show shifts in genotype frequencies in the transmission from mother to offspring that suggest a bias in favor of smaller genomes. The nature of mtDNA size variation in natural populations of crickets is discussed in reference to a mutation-selection balance.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birky C. W., Jr, Maruyama T., Fuerst P. An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics. 1983 Mar;103(3):513–527. doi: 10.1093/genetics/103.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown G. G., DesRosiers L. J. Rat mitochondrial DNA polymorphism: sequence analysis of a hypervariable site for insertions/deletions. Nucleic Acids Res. 1983 Oct 11;11(19):6699–6708. doi: 10.1093/nar/11.19.6699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddy E. M. Germ plasm and the differentiation of the germ cell line. Int Rev Cytol. 1975;43:229–280. doi: 10.1016/s0074-7696(08)60070-4. [DOI] [PubMed] [Google Scholar]
- Hauswirth W. W., Laipis P. J. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4686–4690. doi: 10.1073/pnas.79.15.4686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hauswirth W. W., Van de Walle M. J., Laipis P. J., Olivo P. D. Heterogeneous mitochondrial DNA D-loop sequences in bovine tissue. Cell. 1984 Jul;37(3):1001–1007. doi: 10.1016/0092-8674(84)90434-3. [DOI] [PubMed] [Google Scholar]
- Hutchison C. A., 3rd, Newbold J. E., Potter S. S., Edgell M. H. Maternal inheritance of mammalian mitochondrial DNA. Nature. 1974 Oct 11;251(5475):536–538. doi: 10.1038/251536a0. [DOI] [PubMed] [Google Scholar]
- Kimura M., Ohta T. The Average Number of Generations until Fixation of a Mutant Gene in a Finite Population. Genetics. 1969 Mar;61(3):763–771. doi: 10.1093/genetics/61.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saunders N. C., Kessler L. G., Avise J. C. Genetic Variation and Geographic Differentiation in Mitochondrial DNA of the Horseshoe Crab, LIMULUS POLYPHEMUS. Genetics. 1986 Mar;112(3):613–627. doi: 10.1093/genetics/112.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thrailkill K. M., Birky C. W., Jr Intracellular population genetics: evidence for random drift of mitochondrial allele frequencies in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genetics. 1980 Sep;96(1):237–262. doi: 10.1093/genetics/96.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]