Abstract
The purpose of the work reported here is to identify the molecular basis of the difference in level of expression between the polymorphic Slow and Fast alcohol dehydrogenase (Adh) alleles in Drosophila melanogaster . Previous studies have shown that Fast lines typically have a two- to threefold higher activity level than Slow lines and they also have a substantially higher level of ADH-protein (estimated immunologically). The results of a restriction fragment length polymorphism study in relation to ADH activity variation had previously suggested that the difference in Adh expression between allozymes might not be due entirely to the amino acid replacement substitution, but could be due in part to linkage disequilibrium with a regulatory site polymorphism. Here we describe an approach that makes use of P-element-mediated transformation in order to identify the nucleotide substitution(s) responsible for this difference in ADH level. This approach consists of generating recombinants in vitro between Adh region clones derived from a typical Slow/Fast pair of alleles and then testing for the effects of particular restriction fragments on expression in vivo by transformation. Using this approach, the effect on both ADH activity and ADH-protein level clearly maps to a 2.3-kb restriction fragment that includes all of the Adh coding sequence and some intron and 3' flanking sequence, but excludes all of the 5' flanking sequence of the distal (adult) transcriptional unit. Comparison of Kreitman's DNA sequences for this fragment from several Slow and Fast alleles showing the typical difference in activity level shows that only three nucleotide substitutions distinguish all Fast from all Slow alleles. Thus, it is likely that one or more of these substitutions causes the major difference in Adh expression between allozymic classes. One of these substitutions is, of course, the Slow/Fast amino acid replacement substitution (at 1490) while the other two are nearby third position silent substitutions (at 1443 and 1527). A quantiative analysis of variation among transformant stocks shows that the P-element transformation approach can be used to localize even relatively small effects on gene expression (on the order of 20%).
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S. M., McDonald J. F. Biochemical and molecular analysis of naturally occurring Adh variants in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4798–4802. doi: 10.1073/pnas.80.15.4798. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benyajati C., Spoerel N., Haymerle H., Ashburner M. The messenger RNA for alcohol dehydrogenase in Drosophila melanogaster differs in its 5' end in different developmental stages. Cell. 1983 May;33(1):125–133. doi: 10.1016/0092-8674(83)90341-0. [DOI] [PubMed] [Google Scholar]
- Bingham P. M., Levis R., Rubin G. M. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell. 1981 Sep;25(3):693–704. doi: 10.1016/0092-8674(81)90176-8. [DOI] [PubMed] [Google Scholar]
- Birley A. J., Couch P. A., Marson A. Genetical variation for enzyme activity in a population of Drosophila melanogaster. VI. Molecular variation in the control of alcohol dehydrogenase (ADH) activity. Heredity (Edinb) 1981 Oct;47(2):185–196. doi: 10.1038/hdy.1981.75. [DOI] [PubMed] [Google Scholar]
- Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
- Chovnick A., McCarron M., Clark S. H., Hilliker A. J., Rushlow C. A. Structural and functional organization of a gene in Drosophila melanogaster. Basic Life Sci. 1980;16:3–23. doi: 10.1007/978-1-4684-7968-3_2. [DOI] [PubMed] [Google Scholar]
- Coté B., Bender W., Curtis D., Chovnick A. Molecular mapping of the rosy locus in Drosophila melanogaster. Genetics. 1986 Apr;112(4):769–783. doi: 10.1093/genetics/112.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels S. B., McCarron M., Love C., Clark S. H., Chovnick A. The underlying bases of gene expression differences in stable transformants of the rosy locus in Drosophila melanogaster. Genetics. 1986 Jun;113(2):265–285. doi: 10.1093/genetics/113.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Day T. H., Hillier P. C., Clarke B. The relative quantities and catalytic activities of enzymes produced by alleles at the alcohol dehydrogenase locus in Drosophila melanogaster. Biochem Genet. 1974 Feb;11(2):155–165. doi: 10.1007/BF00485771. [DOI] [PubMed] [Google Scholar]
- Fletcher T. S., Ayala F. J., Thatcher D. R., Chambers G. K. Structural analysis of the ADHS electromorph of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5609–5612. doi: 10.1073/pnas.75.11.5609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg D. A., Posakony J. W., Maniatis T. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line. Cell. 1983 Aug;34(1):59–73. doi: 10.1016/0092-8674(83)90136-8. [DOI] [PubMed] [Google Scholar]
- Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levis R., Hazelrigg T., Rubin G. M. Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science. 1985 Aug 9;229(4713):558–561. doi: 10.1126/science.2992080. [DOI] [PubMed] [Google Scholar]
- Lewis N., Gibson J. Variation in amount of enzyme protein in natural populations. Biochem Genet. 1978 Apr;16(3-4):159–170. doi: 10.1007/BF00484075. [DOI] [PubMed] [Google Scholar]
- Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
- Maroni G. Genetic control of alcohol dehydrogenase levels in Drosophila. Biochem Genet. 1978 Jun;16(5-6):509–523. doi: 10.1007/BF00484215. [DOI] [PubMed] [Google Scholar]
- Maroni G., Laurie-Ahlberg C. C., Adams D. A., Wilton A. N. Genetic variation in the expression of ADH in Drosophila melanogaster. Genetics. 1982 Jul-Aug;101(3-4):431–446. doi: 10.1093/genetics/101.3-4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maroni G., Laurie-Ahlberg C. C. Genetic control of Adh expression in Drosophila melanogaster. Genetics. 1983 Dec;105(4):921–933. doi: 10.1093/genetics/105.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsh J. L., Gibbs P. D., Timmons P. M. Developmental control of transduced dopa decarboxylase genes in D. melanogaster. Mol Gen Genet. 1985;198(3):393–403. doi: 10.1007/BF00332929. [DOI] [PubMed] [Google Scholar]
- McDonald J. F., Anderson S. M., Santos M. Biochemical differences between products of the Adh locus in Drosophila. Genetics. 1980 Aug;95(4):1013–1022. doi: 10.1093/genetics/95.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin G. M., Spradling A. C. Genetic transformation of Drosophila with transposable element vectors. Science. 1982 Oct 22;218(4570):348–353. doi: 10.1126/science.6289436. [DOI] [PubMed] [Google Scholar]
- Scavarda N. J., Hartl D. L. Interspecific DNA transformation in Drosophila. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7515–7519. doi: 10.1073/pnas.81.23.7515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaffer J. B., Bewley G. C. Genetic determination of sn-glycerol-3-phosphate dehydrogenase synthesis in Drosophila melanogaster. A cis-acting controlling element. J Biol Chem. 1983 Aug 25;258(16):10027–10033. [PubMed] [Google Scholar]
- Shermoen A. W., Beckendorf S. K. A complex of interacting DNAase I-hypersensitive sites near the Drosophila glue protein gene, Sgs4. Cell. 1982 Jun;29(2):601–607. doi: 10.1016/0092-8674(82)90176-3. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Rubin G. M. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell. 1983 Aug;34(1):47–57. doi: 10.1016/0092-8674(83)90135-6. [DOI] [PubMed] [Google Scholar]
- Spradling A. C., Rubin G. M. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 1982 Oct 22;218(4570):341–347. doi: 10.1126/science.6289435. [DOI] [PubMed] [Google Scholar]
- Winberg J. O., Hovik R., McKinley-McKee J. S. The alcohol dehydrogenase alleloenzymes AdhS and AdhF from the fruitfly Drosophila melanogaster: an enzymatic rate assay to determine the active-site concentration. Biochem Genet. 1985 Apr;23(3-4):205–216. doi: 10.1007/BF00504319. [DOI] [PubMed] [Google Scholar]