Skip to main content
Genetics logoLink to Genetics
. 1987 Jan;115(1):153–160. doi: 10.1093/genetics/115.1.153

Sexual Hyperactivity and Reduced Longevity of dunce Females of Drosophila melanogaster

Hugo J Bellen 1, John A Kiger Jr 1
PMCID: PMC1203051  PMID: 3030881

Abstract

The dunce gene of Drosophila melanogaster codes for a cyclic adenosine-3',5'-monophosphate-specific phosphodiesterase. Mutations of dunce alter or abolish the activity of this enzyme, produce elevated cAMP levels, cause recessive female sterility, and produce learning deficiencies in both sexes. Aberrant male sexual behavior has also been associated with the memory defects of dunce mutants. Here we show that the longevity of dunce mutant females, homozygous for null-enzyme alleles, is reduced by 50% in the presence of males compared to control dunce females kept without males. Mutant dunce females mate on average every 14 hours whereas wild type revertants of dunce, and Canton-S females, mate every 22–24 hr. We propose a cause-effect relationship between mating and reduced longevity. Pheromones or peptides transferred during mating may activate adenylate cyclase and create an increase in cAMP levels that cannot be damped in dunce females. This increase may affect basic physiological functions and lead to reduced longevity.

Full Text

The Full Text of this article is available as a PDF (886.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Davis R. L., Kiger J. A., Jr Dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system. J Cell Biol. 1981 Jul;90(1):101–107. doi: 10.1083/jcb.90.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Davis R. L., Kiger J. A., Jr Genetic manipulation of cyclic AMP levels in Drosophila melanogaster. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1180–1186. doi: 10.1016/0006-291x(78)91261-5. [DOI] [PubMed] [Google Scholar]
  3. Dudai Y., Zvi S. Multiple defects in the activity of adenylate cyclase from the Drosophila memory mutant rutabaga. J Neurochem. 1985 Aug;45(2):355–364. doi: 10.1111/j.1471-4159.1985.tb03996.x. [DOI] [PubMed] [Google Scholar]
  4. Gailey D. A., Jackson F. R., Siegel R. W. Conditioning Mutations in DROSOPHILA MELANOGASTER Affect an Experience-Dependent Behavioral Modification in Courting Males. Genetics. 1984 Apr;106(4):613–623. doi: 10.1093/genetics/106.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  6. Livingstone M. S. Genetic dissection of Drosophila adenylate cyclase. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5992–5996. doi: 10.1073/pnas.82.17.5992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Livingstone M. S., Sziber P. P., Quinn W. G. Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell. 1984 May;37(1):205–215. doi: 10.1016/0092-8674(84)90316-7. [DOI] [PubMed] [Google Scholar]
  8. Pace U., Hanski E., Salomon Y., Lancet D. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature. 1985 Jul 18;316(6025):255–258. doi: 10.1038/316255a0. [DOI] [PubMed] [Google Scholar]
  9. Spieth H. T. Courtship behavior in Drosophila. Annu Rev Entomol. 1974;19:385–405. doi: 10.1146/annurev.en.19.010174.002125. [DOI] [PubMed] [Google Scholar]
  10. Tompkins L. Genetic analysis of sex appeal in Drosophila. Behav Genet. 1984 Sep;14(5):411–440. doi: 10.1007/BF01065443. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES