Abstract
Strains of E. coli B/r transformed with the plasmid pSK760 were found to be sensitized to inactivation by ultraviolet radiation (UV) and to have elevated levels of RNase H activity. Strains transformed with the carrier vector pBR322 or the plasmid pSK762C derived from pSK760 but with an inactivated rnh gene were not sensitized. UV-inactivation data for strains having known defects in DNA repair and transformed with pSK760 suggested an interference by RNase H of postreplication repair: uvrA cells were strongly sensitized, wild-type and uvrA recF cells were moderately sensitized and recA cells were not sensitized; and minimal medium recovery was no longer apparent in sensitized uvrA cells. Biochemical studies showed that post-UV DNA synthesis was sensitized and that the smaller amounts of DNA synthesized after irradiation, while of normal reduced size as indicated by sedimentation position in alkaline sucrose gradients, did not shift to a larger size (more rapidly sedimenting) upon additional incubation. We suggest an excess level of RNase H interferes with reinitiation of DNA synthesis on damaged templates to disturb the normal pattern of daughter strand gaps and thereby to inhibit postreplication repair.
Full Text
The Full Text of this article is available as a PDF (793.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bialy H., Kogoma T. RNase H is not involved in the induction of stable DNA replication in Escherichia coli. J Bacteriol. 1986 Jan;165(1):321–323. doi: 10.1128/jb.165.1.321-323.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carl P. L., Bloom L., Crouch R. J. Isolation and mapping of a mutation in Escherichia coli with altered levels of ribonuclease H. J Bacteriol. 1980 Oct;144(1):28–35. doi: 10.1128/jb.144.1.28-35.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Champoux J. J., McConaughy B. L. Priming of superhelical SV40 DNA by Escherichia coli RNA polymerase for in vitro DNA synthesis. Biochemistry. 1975 Jan 28;14(2):307–316. doi: 10.1021/bi00673a017. [DOI] [PubMed] [Google Scholar]
- Fong K., Bockrath R. C. Evidence for two modes of DNA degradation in Escherichia coli following ultraviolet irradiation. Radiat Res. 1977 Oct;72(1):134–144. [PubMed] [Google Scholar]
- Hillenbrand G., Staudenbauer W. L. Discriminatory function of ribonuclease H in the selective initiation of plasmid DNA replication. Nucleic Acids Res. 1982 Feb 11;10(3):833–853. doi: 10.1093/nar/10.3.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horii Z., Clark A. J. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol. 1973 Oct 25;80(2):327–344. doi: 10.1016/0022-2836(73)90176-9. [DOI] [PubMed] [Google Scholar]
- Kanaya S., Crouch R. J. DNA sequence of the gene coding for Escherichia coli ribonuclease H. J Biol Chem. 1983 Jan 25;258(2):1276–1281. [PubMed] [Google Scholar]
- Khidhir M. A., Casaregola S., Holland I. B. Mechanism of transient inhibition of DNA synthesis in ultraviolet-irradiated E. coli: inhibition is independent of recA whilst recovery requires RecA protein itself and an additional, inducible SOS function. Mol Gen Genet. 1985;199(1):133–140. doi: 10.1007/BF00327522. [DOI] [PubMed] [Google Scholar]
- Naito S., Kitani T., Ogawa T., Okazaki T., Uchida H. Escherichia coli mutants suppressing replication-defective mutations of the ColE1 plasmid. Proc Natl Acad Sci U S A. 1984 Jan;81(2):550–554. doi: 10.1073/pnas.81.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
- Sharma R. C., Sargentini N. J., Smith K. C. New mutation (mmrA1) in Escherichia coli K-12 that affects minimal medium recovery and postreplication repair after UV irradiation. J Bacteriol. 1983 May;154(2):743–747. doi: 10.1128/jb.154.2.743-747.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma R. C., Smith K. C. Inducible postreplication repair is responsible for minimal medium recovery in UV-irradiated Escherichia coli K-12. Photochem Photobiol. 1983 Sep;38(3):301–303. doi: 10.1111/j.1751-1097.1983.tb02675.x. [DOI] [PubMed] [Google Scholar]