Skip to main content
Genetics logoLink to Genetics
. 1987 May;116(1):45–53. doi: 10.1093/genetics/116.1.45

Large Heterologies Impose Their Gene Conversion Pattern onto Closely Linked Point Mutations

H Hamza 1, A Nicolas 1, J L Rossignol 1
PMCID: PMC1203119  PMID: 17246379

Abstract

We have studied the meiotic non-Mendelian segregation (NMS) pattern of seven large heterologous combinations located in the b2 ascospore gene of Ascobolus. The NMS patterns of these aberration heterozygotes widely differ from each other and from those of point mutations located in the same genetic region. They give lower gene conversion frequencies than point mutations, no postmeiotic segregations (PMS), and either parity or disparity that favors the wild type allele. Two related deletions, G234 and G40, were studied for their effects on the conversion behavior of closely linked point mutations. We found that, when heterozygous, the deletions impose their own NMS pattern onto close mutations. These effects occur on both sides of the heterologies. The effects upon PMS and disparity of linked point mutations gradually disappear as point mutations become more distant. The effects on NMS frequencies and on aberrant 4:4 are polar. They persist for all mutations located downstream from the high conversion end of the gene. This last effect can reflect a blockage of symmetric hDNA formation by large heterologies, whereas the epistasis of the NMS pattern of large heterologies over that of closely linked point mutations suggests that large heterologies and point mutations undergo conversion by means of distinct pathways.

Full Text

The Full Text of this article is available as a PDF (1,005.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltimore D. Gene conversion: some implications for immunoglobulin genes. Cell. 1981 Jun;24(3):592–594. doi: 10.1016/0092-8674(81)90082-9. [DOI] [PubMed] [Google Scholar]
  2. Burns P. A., Kinnaird J. H., Kilbey B. J., Fincham J. R. Sequencing studies of ICR-170 mutagenic specificity in the am (NADP-specific glutamate dehydrogenase) gene of Neurospora crassa. Genetics. 1986 May;113(1):45–51. doi: 10.1093/genetics/113.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Donahue T. F., Farabaugh P. J., Fink G. R. Suppressible four-base glycine and proline codons in yeast. Science. 1981 Apr 24;212(4493):455–457. doi: 10.1126/science.7010605. [DOI] [PubMed] [Google Scholar]
  4. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  5. Fink G. R., Styles C. A. Gene conversion of deletions in the his4 region of yeast. Genetics. 1974 Jun;77(2):231–244. doi: 10.1093/genetics/77.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fogel S., Mortimer R., Lusnak K., Tavares F. Meiotic gene conversion: a signal of the basic recombination event in yeast. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1325–1341. doi: 10.1101/sqb.1979.043.01.152. [DOI] [PubMed] [Google Scholar]
  7. Girard J., Rossignol J. L. The suppression of gene conversion and intragenic crossing over in Ascobolus immersus: evidence for modifiers acting in the heterozygous state. Genetics. 1974 Feb;76(2):221–243. doi: 10.1093/genetics/76.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hamza H., Haedens V., Mekki-Berrada A., Rossignol J. L. Hybrid DNA formation during meiotic recombination. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7648–7651. doi: 10.1073/pnas.78.12.7648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamza H., Kalogeropoulos A., Nicolas A., Rossignol J. L. Two mechanisms for directional gene conversion. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7386–7390. doi: 10.1073/pnas.83.19.7386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lawrence C. W., Sherman F., Jackson M., Gilmore R. A. Mapping and gene conversion studies with the structural gene for iso-1-cytochrome C in yeast. Genetics. 1975 Dec;81(4):615–629. doi: 10.1093/genetics/81.4.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nicolas A., Hamza H., Mekki-Berrada A., Kalogeropoulos A., Rossignol J. L. Premeiotic and Meiotic Instability Generates Numerous b2 Mutation Derivatives in Ascobolus. Genetics. 1987 May;116(1):33–43. doi: 10.1093/genetics/116.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nicolas A., Rossignol J. L. Gene conversion: point-mutation heterozygosities lower heteroduplex formation. EMBO J. 1983;2(12):2265–2270. doi: 10.1002/j.1460-2075.1983.tb01733.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. RIZET G., ENGELMANN N., LEFORT C., LISSOUBA P., MOUSSEAU J. [On an Ascomycete of interest for the study of certain aspects of the problem of gene structure]. C R Hebd Seances Acad Sci. 1960 Mar 14;250:2050–2052. [PubMed] [Google Scholar]
  14. Radding C. M. The mechanism of conversion of deletions and insertions. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):1315–1316. doi: 10.1101/sqb.1979.043.01.150. [DOI] [PubMed] [Google Scholar]
  15. Rossignol J. L., Nicolas A., Hamza H., Langin T. Origins of gene conversion and reciprocal exchange in Ascobolus. Cold Spring Harb Symp Quant Biol. 1984;49:13–21. doi: 10.1101/sqb.1984.049.01.004. [DOI] [PubMed] [Google Scholar]
  16. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES