Skip to main content
Genetics logoLink to Genetics
. 1987 Sep;117(1):13–23. doi: 10.1093/genetics/117.1.13

Nucleo-Cytoplasmic Interaction during Macronuclear Differentiation in Ciliate Protists: Genetic Basis for Cytoplasmic Control of SerH Expression during Macronuclear Development in Tetrahymena thermophila

F P Doerder 1, M S Berkowitz 1
PMCID: PMC1203181  PMID: 3666439

Abstract

A novel class of mutations affecting the developmental expression of SerH cell surface antigen genes of Tetrahymena thermophila is described. Unlike previous categories of mutation, the four independently isolated mutations of this class act through the cytoplasm to affect SerH genes during macronuclear development. That is, macronuclei which develop under the influence of mutant cytoplasm do not subsequently express H, most likely because the developmental processing of SerH genes is affected. The cytoplasmic effect is specific for the SerH locus and is independent of which SerH allele is present. In place of H, hitherto unknown antigens are expressed. Expression of SerH can be rescued during development either by wild-type cytoplasm exchanged between conjugants or by the homozygous wild-type genotype. The mutations segregate independently of the SerH genes and identify one, possibly two, bistable genes. Possible models to explain these results are discussed.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S. L. Cytogenetics of genomic exclusion in Tetrahymena. Genetics. 1967 Apr;55(4):797–822. doi: 10.1093/genetics/55.4.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson K. V., Nüsslein-Volhard C. Information for the dorsal--ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature. 1984 Sep 20;311(5983):223–227. doi: 10.1038/311223a0. [DOI] [PubMed] [Google Scholar]
  3. Bannon G. A., Bowen J. K., Yao M. C., Gorovsky M. A. Tetrahymena H4 genes: structure, evolution and organization in macro- and micronuclei. Nucleic Acids Res. 1984 Feb 24;12(4):1961–1975. doi: 10.1093/nar/12.4.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brygoo Y. Genetic Analysis of Mating-Type Differentiation in PARAMECIUM TETRAURELIA. Genetics. 1977 Dec;87(4):633–653. doi: 10.1093/genetics/87.4.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brygoo Y., Sonneborn T. M., Keller A. M., Dippell R. V., Schneller M. V. Genetic Analysis of Mating Type Differentiation in PARAMECIUM TETRAURELIA. II. Role of the Micronuclei in Mating-Type Determination. Genetics. 1980 Apr;94(4):951–959. doi: 10.1093/genetics/94.4.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Callahan R. C., Shalke G., Gorovsky M. A. Developmental rearrangements associated with a single type of expressed alpha-tubulin gene in Tetrahymena. Cell. 1984 Feb;36(2):441–445. doi: 10.1016/0092-8674(84)90237-x. [DOI] [PubMed] [Google Scholar]
  7. Conover R. K., Brunk C. F. Macronuclear DNA molecules of Tetrahymena thermophila. Mol Cell Biol. 1986 Mar;6(3):900–905. doi: 10.1128/mcb.6.3.900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doerder F. P., Berkowitz M. S. Purification and partial characterization of the H immobilization antigens of Tetrahymena thermophila. J Protozool. 1986 May;33(2):204–208. doi: 10.1111/j.1550-7408.1986.tb05590.x. [DOI] [PubMed] [Google Scholar]
  9. Doerder F. P., Berkowitz M. S., Skalican-Crowe J. Isolation and genetic analysis of mutations at the SerH immobilization antigen locus of Tetrahymena thermophila. Genetics. 1985 Oct;111(2):273–286. doi: 10.1093/genetics/111.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doerder F. P. Dominant mutations regulating i-antigen expression in Tetrahymena thermophila. J Hered. 1986 May-Jun;77(3):202–204. doi: 10.1093/oxfordjournals.jhered.a110214. [DOI] [PubMed] [Google Scholar]
  11. Doerder F. P., Lief J. H., Debault L. E. Macronuclear Subunits of Tetrahymena thermophila Are Functionally Haploid. Science. 1977 Dec 2;198(4320):946–948. doi: 10.1126/science.198.4320.946. [DOI] [PubMed] [Google Scholar]
  12. Epstein L. M., Forney J. D. Mendelian and non-mendelian mutations affecting surface antigen expression in Paramecium tetraurelia. Mol Cell Biol. 1984 Aug;4(8):1583–1590. doi: 10.1128/mcb.4.8.1583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herrick G., Cartinhour S., Dawson D., Ang D., Sheets R., Lee A., Williams K. Mobile elements bounded by C4A4 telomeric repeats in Oxytricha fallax. Cell. 1985 Dec;43(3 Pt 2):759–768. doi: 10.1016/0092-8674(85)90249-1. [DOI] [PubMed] [Google Scholar]
  14. Martindale D. W., Martindale H. M., Bruns P. J. Tetrahymena conjugation-induced genes: structure and organization in macro- and micronuclei. Nucleic Acids Res. 1986 Feb 11;14(3):1341–1354. doi: 10.1093/nar/14.3.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mayo K. A., Orias E. Developmental regulation of gene expression in Tetrahymena. Dev Biol. 1986 Aug;116(2):302–313. doi: 10.1016/0012-1606(86)90133-8. [DOI] [PubMed] [Google Scholar]
  16. McDonald B. B. The exchange of RNA and protein during conjugation in Tetrahymena. J Protozool. 1966 May;13(2):277–285. doi: 10.1111/j.1550-7408.1966.tb01908.x. [DOI] [PubMed] [Google Scholar]
  17. NANNEY D. L. Anomalous serotypes in Tetrahymena. J Protozool. 1962 Nov;9:485–487. doi: 10.1111/j.1550-7408.1962.tb02659.x. [DOI] [PubMed] [Google Scholar]
  18. Sonneborn T. M. Genetics of cellular differentiation: stable nuclear differentiation in eucaryotic unicells. Annu Rev Genet. 1977;11:349–367. doi: 10.1146/annurev.ge.11.120177.002025. [DOI] [PubMed] [Google Scholar]
  19. Yao M. C., Choi J., Yokoyama S., Austerberry C. F., Yao C. H. DNA elimination in Tetrahymena: a developmental process involving extensive breakage and rejoining of DNA at defined sites. Cell. 1984 Feb;36(2):433–440. doi: 10.1016/0092-8674(84)90236-8. [DOI] [PubMed] [Google Scholar]
  20. Yao M. C., Zhu S. G., Yao C. H. Gene amplification in Tetrahymena thermophila: formation of extrachromosomal palindromic genes coding for rRNA. Mol Cell Biol. 1985 Jun;5(6):1260–1267. doi: 10.1128/mcb.5.6.1260. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES