Abstract
A study of genic variation in natural population of D. melanogaster was undertaken (1) to obtain a better estimate of heterozygosity by sampling a relatively large number of gene loci and (2) to identify different groups of polymorphic loci whose variation patterns might suggest different kinds of selection forces. A total of 117 gene loci (coding for 79 enzymes and 38 abundant proteins) were studied in 15 geographically distant populations originating from different continents. The findings of this study are as follows: (1) of the 117 gene loci studied, 61 are polymorphic and 56 are uniformly monomorphic everywhere. (2) An average population is polymorphic for 43% of its gene loci and an average individual is heterozygous for 10% of its gene loci. These estimates are remarkably similar among populations. (3) The average within-locality heterozygosity (HS) for polymorphic loci is uniformly distributed over the range of heterozygosity observed; i.e. , given that a locus has any local variation, it is nearly as likely to have a lot as a little. (4) The distribution of FST (fixation index) is strongly skewed, with a prominent mode at 8–10% and a long tail of high values reaching a maximum of 58%. Two-thirds of all loci fall within the bell-shaped distribution centered on an FST of 8–10%, a result compatible with the notion that they are experiencing a common tendency toward small interlocality differences owing to extensive gene flow among populations. (5) The distribution of total heterozygosity (HT) has a prominent bimodal distribution. The lower mode consists of loci with single prominent allele and a few uncommon ones and the upper mode consists of clinally varying loci with a high FST (e.g., Adh and G6-pd), loci with many alleles in high frequency (e.g., Ao and Xdh) and loci with two alleles in high frequency in all populations but, with little interpopulational differentiation (e.g., Est-6 and α-Fuc). The loci in the lower mode are probably under purifying selection; a large proportion of those in the latter mode may be under balancing selection. (6) Comparison of genic variation for loci located inside vs. outside inversions, comparison of FST for inversions and their associated genes, and comparison of FST and map position for pairs of loci all suggest that, while linkage has some influence, it does not seem to constrain the pattern of variation that a locus may develop. (7) Eighteen polymorphic loci show latitudinal variation in allele frequencies which are consistent in populations from different continents. (8) Estimates of Nei genetic distance between population pairs are generally low between populations on the same continent and high between populations on different continents. There are two important exceptions: population pairs for which both localities are in the temperate zone show no relationship to distance, and in cases where both populations are tropical or subtropical, the genetic distance is higher than for the temperate-tropical comparisons and seem even higher than one would expect from the geographic distance separating them. The latter observation suggests that either geographic separation outweighs differences in environment in determining the genetic composition of a population or that all tropical populations are not experiencing the same environment.—The results are discussed in relation to the neutralist-selectionist controversy of genic variation and two important conclusions are drawn: First, there is a negative correlation between the number of loci sampled and the resulting heterozygosity. This means that available estimates of heterozygosity, 85% of which are based on 30 or fewer loci, are high and hence not appropriate for making between-taxa comparisons. Secondly, there is a group of loci, comprising one-third of polymorphic loci (or about 15% of all loci studied), that is distinguishable by different patterns of variation within and among populations. Most of these loci have clinal variation which is consistent with the hypothesis that their genetic variation is maintained by balancing selection.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gillespie J. H., Langley C. H. A general model to account for enzyme variation in natural populations. Genetics. 1974 Apr;76(4):837–848. doi: 10.1093/genetics/76.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall J. G. Temperature-related kinetic differentiation of glucosephosphate isomerase alleloenzymes isolated from the blue mussel, Mytilus edulis. Biochem Genet. 1985 Oct;23(9-10):705–728. [PubMed] [Google Scholar]
- Harris H. Enzyme polymorphisms in man. Proc R Soc Lond B Biol Sci. 1966 Mar 22;164(995):298–310. doi: 10.1098/rspb.1966.0032. [DOI] [PubMed] [Google Scholar]
- Harris H., Hopkinson D. A. Average heterozygosity per locus in man: an estimate based on the incidence of enzyme polymorphisms. Ann Hum Genet. 1972 Jul;36(1):9–20. doi: 10.1111/j.1469-1809.1972.tb00578.x. [DOI] [PubMed] [Google Scholar]
- Harris H., Hopkinson D. A., Edwards Y. H. Polymorphism and the subunit structure of enzymes: a contribution to the neutralist-selectionist controversy. Proc Natl Acad Sci U S A. 1977 Feb;74(2):698–701. doi: 10.1073/pnas.74.2.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartl D. L., Dykhuizen D. E. The population genetics of Escherichia coli. Annu Rev Genet. 1984;18:31–68. doi: 10.1146/annurev.ge.18.120184.000335. [DOI] [PubMed] [Google Scholar]
- Johnson G. B. Enzyme polymorphism and metabolism. Science. 1974 Apr 5;184(4132):28–37. doi: 10.1126/science.184.4132.28. [DOI] [PubMed] [Google Scholar]
- Lewontin R. C., Ginzburg L. R., Tuljapurkar S. D. Heterosis as an explanation for large amounts of genic polymorphism. Genetics. 1978 Jan;88(1):149–169. doi: 10.1093/genetics/88.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewontin R. C., Krakauer J. Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics. 1973 May;74(1):175–195. doi: 10.1093/genetics/74.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewontin R. C., Krakauer J. Letters to the editors: Testing the heterogeneity of F values. Genetics. 1975 Jun;80(2):397–398. doi: 10.1093/genetics/80.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markert C. L., Møller F. MULTIPLE FORMS OF ENZYMES: TISSUE, ONTOGENETIC, AND SPECIES SPECIFIC PATTERNS. Proc Natl Acad Sci U S A. 1959 May;45(5):753–763. doi: 10.1073/pnas.45.5.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama T., Nei M. Genetic variability maintained by mutation and overdominant selection in finite populations. Genetics. 1981 Jun;98(2):441–459. doi: 10.1093/genetics/98.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nei M., Maruyama T. Letters to the editors: Lewontin-Krakauer test for neutral genes. Genetics. 1975 Jun;80(2):395–395. doi: 10.1093/genetics/80.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Brien S. J., MacIntyre R. J. The -glycerophosphate cycle in Drosophila melanogaster. I. Biochemical and developmental aspects. Biochem Genet. 1972 Oct;7(2):141–161. doi: 10.1007/BF00486085. [DOI] [PubMed] [Google Scholar]
- O'brien S. J., Wildt D. E., Goldman D., Merril C. R., Bush M. The cheetah is depauperate in genetic variation. Science. 1983 Jul 29;221(4609):459–462. doi: 10.1126/science.221.4609.459. [DOI] [PubMed] [Google Scholar]
- Oakeshott J. G., Chambers G. K., Gibson J. B., Willcocks D. A. Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies in Drosophila melanogaster. Heredity (Edinb) 1981 Dec;47(Pt 3):385–396. doi: 10.1038/hdy.1981.99. [DOI] [PubMed] [Google Scholar]
- Richmond R. C., Gilbert D. G., Sheehan K. B., Gromko M. H., Butterworth F. M. Esterase 6 and reproduction in Drosophila melanogaster. Science. 1980 Mar 28;207(4438):1483–1485. doi: 10.1126/science.6767273. [DOI] [PubMed] [Google Scholar]
- Robertson A. Gene frequency distributions as a test of selective neutrality. Genetics. 1975 Dec;81(4):775–785. doi: 10.1093/genetics/81.4.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaffer H. E., Johnson F. M. Isozyme allelic frequencies related to selection and gene-flow hypotheses. Genetics. 1974 May;77(1):163–168. doi: 10.1093/genetics/77.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh R. S., Coulthart M. B. Genic variation in abundant soluble proteins of Drosophila melanogaster and Drosophila pseudoobscura. Genetics. 1982 Nov;102(3):437–453. doi: 10.1093/genetics/102.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh R. S., Hickey D. A., David J. Genetic Differentiation between Geographically Distant Populations of DROSOPHILA MELANOGASTER. Genetics. 1982 Jun;101(2):235–256. doi: 10.1093/genetics/101.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh R. S. Substrate-specific enzyme variation in natural populations of Drosophila pseudoobscura. Genetics. 1976 Mar 25;82(3):507–526. doi: 10.1093/genetics/82.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Voelker R. A., Cockerham C. C., Johnson F. M., Schaffer H. E., Mukai T., Mettler L. E. Inversions fail to account for allozyme clines. Genetics. 1978 Mar;88(3):515–527. doi: 10.1093/genetics/88.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]