Skip to main content
Genetics logoLink to Genetics
. 1987 Oct;117(2):285–295. doi: 10.1093/genetics/117.2.285

Heritability and Variability in Ribosomal RNA Genes of Vicia faba

Scott O Rogers 1, Arnold J Bendich 1
PMCID: PMC1203204  PMID: 17246404

Abstract

We have compared the restriction patterns and copy numbers of ribosomal RNA genes (rDNA) between and within individuals of Vicia faba . While the EcoRI blot-hybridization patterns changed only after one to two generations, copy number changes were found among different tissues of the same plant. Copy number differences among individuals in the population were as great as 95-fold, whereas as much as a 12-fold variation was seen among tissues of the same plant. Among individual F1 progeny from genetic crosses, nearly an 8-fold variation was seen, and among individuals of the F2 generation a spread of 22-fold was measured. Among individual siblings of self-pollinated parents, up to 7-fold variation was observed. However, changes in copy number did not necessarily indicate changes in rDNA EcoRI blot-hybridization pattern, and vice versa. Furthermore, nearest neighbor analysis of R-loop experiments showed that the arrangement of members of the "nontranscribed" spacer (NTS) size classes along the chromosome was not random, but some clustering was indicated. The data are consistent with the hypothesis that sister chromatid exchange in somatic cells of V. faba is the primary mechanism for altering the rDNA copy number as well as causing the extreme variation observed in the NTS. Variation among individuals in rDNA blot-hybridization pattern was also observed for Vicia villosa, Vicia dasycarpa, Vicia benghalensis and Vicia pannonica.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Grisvard J., Tuffet-Anghileri A. Variations in the satellite DNA content of Cucumis melo in relation to dedifferentiation and hormone concentration. Nucleic Acids Res. 1980 Jun 25;8(12):2843–2858. doi: 10.1093/nar/8.12.2843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hammond M. P., Laird C. D. Control of DNA replication and spatial distribution of defined DNA sequences in salivary gland cells of Drosophila melanogaster. Chromosoma. 1985;91(3-4):279–286. doi: 10.1007/BF00328223. [DOI] [PubMed] [Google Scholar]
  3. McMullen M. D., Hunter B., Phillips R. L., Rubenstein I. The structure of the maize ribosomal DNA spacer region. Nucleic Acids Res. 1986 Jun 25;14(12):4953–4968. doi: 10.1093/nar/14.12.4953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Moore S. P., Sutherland B. M. A densitometric nondestructive microassay for DNA quantitation. Anal Biochem. 1985 Jan;144(1):15–19. doi: 10.1016/0003-2697(85)90077-6. [DOI] [PubMed] [Google Scholar]
  5. Tautz D., Renz M. An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Anal Biochem. 1983 Jul 1;132(1):14–19. doi: 10.1016/0003-2697(83)90419-0. [DOI] [PubMed] [Google Scholar]
  6. Wellauer P. K., Reeder R. H., Dawid I. B., Brown D. D. Arrangement of length heterogeneity in repeating units of amplified and chromosomal ribosomal DNA from Xenopus laevis. J Mol Biol. 1976 Aug 25;105(4):487–505. doi: 10.1016/0022-2836(76)90230-8. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES