Skip to main content
Genetics logoLink to Genetics
. 1987 Oct;117(2):297–307. doi: 10.1093/genetics/117.2.297

Isolation and Characterization of a 1.7-Kb Transposable Element from a Mutator Line of Maize

Loverine P Taylor 1, Virginia Walbot 1
PMCID: PMC1203205  PMID: 2444493

Abstract

We have cloned and sequenced a 1.7-kb Mu element from a Mutator line of maize and compared its structure to Mu1, a 1.4-kb element. With the exception of a 385-bp block of DNA present in the 1.7-kb element, these transposable elements are structurally similar, sharing terminally inverted and internal direct repeated sequences. Derivation of 1.4-kb elements from the 1.7-kb class via deletion of internal sequence is suggested by the finding that a portion of the extra DNA in Mu1.7 is part of a truncated direct repeat sequence in the 1.4-kb element. An abundant poly(A)+ RNA homologous to a portion of this extra DNA is present in several tissues of both Mutator and non-Mutator lines. Analysis of transcripts from an unstable mutant bronze1 (bz) allele containing a Mu1.7 element inserted in an exon of the gene detects three species of poly(A)+ RNA that hybridize to a Bz1 (Bronze) gene probe: the largest contains the entire Mu1.7 element in the Bz1 gene transcript; another appears to be a spliced, chimeric transcript; the smallest is normal size Bz1 mRNA. The latter is most likely encoded by the normal-size alleles detected by Southern analysis of tissue expressing purple pigment, suggesting that normal gene function is restored by excision of the Mu1.7 element.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alleman M., Freeling M. The Mu transposable elements of maize: evidence for transposition and copy number regulation during development. Genetics. 1986 Jan;112(1):107–119. doi: 10.1093/genetics/112.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barker R. F., Thompson D. V., Talbot D. R., Swanson J., Bennetzen J. L. Nucleotide sequence of the maize transposable element Mul. Nucleic Acids Res. 1984 Aug 10;12(15):5955–5967. doi: 10.1093/nar/12.15.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennetzen J. L., Swanson J., Taylor W. C., Freeling M. DNA insertion in the first intron of maize Adh1 affects message levels: cloning of progenitor and mutant Adh1 alleles. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4125–4128. doi: 10.1073/pnas.81.13.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fromm M. E., Taylor L. P., Walbot V. Stable transformation of maize after gene transfer by electroporation. 1986 Feb 27-Mar 5Nature. 319(6056):791–793. doi: 10.1038/319791a0. [DOI] [PubMed] [Google Scholar]
  5. Gerats A. G., Bussard J., Coe E. H., Jr, Larson R. Influence of B and Pl on UDPG:Flavonoid-3-O-glucosyltransferase in Zea mays L. Biochem Genet. 1984 Dec;22(11-12):1161–1169. doi: 10.1007/BF00499639. [DOI] [PubMed] [Google Scholar]
  6. Karess R. E., Rubin G. M. Analysis of P transposable element functions in Drosophila. Cell. 1984 Aug;38(1):135–146. doi: 10.1016/0092-8674(84)90534-8. [DOI] [PubMed] [Google Scholar]
  7. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Pereira A., Schwarz-Sommer Z., Gierl A., Bertram I., Peterson P. A., Saedler H. Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays. EMBO J. 1985 Jan;4(1):17–23. doi: 10.1002/j.1460-2075.1985.tb02311.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rowland L. J., Strommer J. N. Insertion of an unstable element in an intervening sequence of maize Adh1 affects transcription but not processing. Proc Natl Acad Sci U S A. 1985 May;82(9):2875–2879. doi: 10.1073/pnas.82.9.2875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  12. Schiefelbein J. W., Raboy V., Fedoroff N. V., Nelson O. E., Jr Deletions within a defective suppressor-mutator element in maize affect the frequency and developmental timing of its excision from the bronze locus. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4783–4787. doi: 10.1073/pnas.82.14.4783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Setzer D. R., McGrogan M., Nunberg J. H., Schimke R. T. Size heterogeneity in the 3' end of dihydrofolate reductase messenger RNAs in mouse cells. Cell. 1980 Nov;22(2 Pt 2):361–370. doi: 10.1016/0092-8674(80)90346-3. [DOI] [PubMed] [Google Scholar]
  14. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  15. Taylor L. P., Walbot V. A deletion adjacent to the maize transposable element Mu-1 accompanies loss of Adh1 expression. EMBO J. 1985 Apr;4(4):869–876. doi: 10.1002/j.1460-2075.1985.tb03712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Woodman J. C., Freeling M. Identification of a genetic element that controls the organ-specific expression of adh1 in maize. Genetics. 1981 Jun;98(2):357–378. doi: 10.1093/genetics/98.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES