Skip to main content
Genetics logoLink to Genetics
. 1987 Nov;117(3):421–427. doi: 10.1093/genetics/117.3.421

Conditional Overdominance at an Alcohol Dehydrogenase Locus in Yeast

John G Hall 1, Christopher Wills 1
PMCID: PMC1203218  PMID: 3319769

Abstract

Documented examples of heterosis attributable to overdominance at specific protein-encoding gene loci have rarely been reported, the association of sickle cell hemoglobin with malarial resistance being the best documented example of this phenomenon. Here we report an example of overdominance that is temperature- and allyl alcohol-dependent and due to heterozygosity at the ADH1 locus, involving two ADHI functional mutants. Overdominance appears to be due in part to an intermediate level of ADHI activity in the heterozygote. Unlike previous work with this system using haploid strains, the NAD +/NADH ratios show no negative correlation with allyl alcohol resistance. This system is formally equivalent to that of sickle cell hemoglobin and shows promise as a tool for investigating the physiological basis for overdominance.

Full Text

The Full Text of this article is available as a PDF (750.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hollocher H., Place A. R. Partial correction of structural defects in alcohol dehydrogenase through interallelic complementation in Drosophila melanogaster. Genetics. 1987 Jun;116(2):265–274. doi: 10.1093/genetics/116.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  3. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lilius E. M., Multanen V. M., Toivonen V. Quantitative extraction and estimation of intracellular nicotinamide nucleotides of Escherichia coli. Anal Biochem. 1979 Oct 15;99(1):22–27. doi: 10.1016/0003-2697(79)90039-3. [DOI] [PubMed] [Google Scholar]
  5. Rando R. R. Allyl alcohol-induced irreversible inhibition of yeast alcohol dehydrogenase. Biochem Pharmacol. 1974 Aug 15;23(16):2328–2331. doi: 10.1016/0006-2952(74)90563-2. [DOI] [PubMed] [Google Scholar]
  6. Rigby P. W., Burleigh B. D., Jr, Hartley B. S. Gene duplication in experimental enzyme evolution. Nature. 1974 Sep 20;251(5472):200–204. doi: 10.1038/251200a0. [DOI] [PubMed] [Google Scholar]
  7. SCHLESINGER M. J., LEVINTHAL C. Hybrid protein formation of E. coli alkaline phosphatase leading to in vitro complementation. J Mol Biol. 1963 Jul;7:1–12. doi: 10.1016/s0022-2836(63)80014-5. [DOI] [PubMed] [Google Scholar]
  8. Wills C., Jörnvall H. Amino acid substitutions in two functional mutants of yeast alcohol dehydrogenase. Nature. 1979 Jun 21;279(5715):734–736. doi: 10.1038/279734a0. [DOI] [PubMed] [Google Scholar]
  9. Wu T. T., Lin E. C., Tanaka S. Mutants of Aerobacter aerogenes capable of utilizing xylitol as a novel carbon. J Bacteriol. 1968 Aug;96(2):447–456. doi: 10.1128/jb.96.2.447-456.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Zabin I., Villarejo M. R. Protein complementation. Annu Rev Biochem. 1975;44:295–313. doi: 10.1146/annurev.bi.44.070175.001455. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES