Abstract
Predictions are made of the equilibrium genetic variances and responses in a metric trait under the joint effects of directional selection, mutation and linkage in a finite population. The "infinitesimal model" is analyzed as the limiting case of many mutants of very small effect, otherwise Monte Carlo simulation is used. If the effects of mutant genes on the trait are symmetrically distributed and they are unlinked, the variance of mutant effects is not an important parameter. If the distribution is skewed, unless effects or the population size is small, the proportion of mutants that have increasing effect is the critical parameter. With linkage the distribution of genotypic values in the population becomes skewed downward and the equilibrium genetic variance and response are smaller as disequilibrium becomes important. Linkage effects are greater when the mutational variance is contributed by many genes of small effect than few of large effect, and are greater when the majority of mutants increase rather than decrease the trait because genes that are of large effect or are deleterious do not segregate for long. The most likely conditions for "Muller's ratchet" are investigated.
Full Text
The Full Text of this article is available as a PDF (969.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Avery P. J., Hill W. G. Variance in quantitative traits due to linked dominant genes and variance in heterozygosity in small populations. Genetics. 1979 Apr;91(4):817–844. doi: 10.1093/genetics/91.4.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bulmer M. G. The effect of selection on genetic variability: a simulation study. Genet Res. 1976 Oct;28(2):101–117. doi: 10.1017/s0016672300016797. [DOI] [PubMed] [Google Scholar]
- Felsenstein J. The evolutionary advantage of recombination. Genetics. 1974 Oct;78(2):737–756. doi: 10.1093/genetics/78.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keightley P. D., Hill W. G. Effects of linkage on response to directional selection from new mutations. Genet Res. 1983 Oct;42(2):193–206. doi: 10.1017/s0016672300021650. [DOI] [PubMed] [Google Scholar]
- Mukai T., Chigusa S. I., Mettler L. E., Crow J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics. 1972 Oct;72(2):335–355. doi: 10.1093/genetics/72.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]