Skip to main content
Genetics logoLink to Genetics
. 1987 Dec;117(4):739–744. doi: 10.1093/genetics/117.4.739

Metallothionein Gene Duplications and Metal Tolerance in Natural Populations of Drosophila melanogaster

G Maroni 1, J Wise 1, J E Young 1, E Otto 1
PMCID: PMC1203245  PMID: 2828157

Abstract

A search for duplications of the Drosophila melanogaster metallothionein gene (Mtn) yielded numerous examples of this type of chromosomal rearrangement. These duplications are distributed widely—we found them in samples from four continents, and they are functional—larvae carrying Mtn duplications produce more Mtn RNA and tolerate increased cadmium and copper concentrations. Six different duplication types were characterized by restriction-enzyme analyses using probes from the Mtn region. The restriction maps show that in four cases the sequences, ranging in size between 2.2 and 6.0 kb, are arranged as direct, tandem repeats; in two other cases, this basic pattern is modified by the insertion of a putative transposable element into one of the repeated units. Duplications of the D. melanogaster metallothionein gene such as those that we found in natural populations may represent early stages in the evolution of a gene family.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chia W., Savakis C., Karp R., Pelham H., Ashburner M. Mutation of the Adh gene of Drosophila melanogaster containing an internal tandem duplication. J Mol Biol. 1985 Dec 20;186(4):679–688. doi: 10.1016/0022-2836(85)90388-2. [DOI] [PubMed] [Google Scholar]
  2. Karin M., Najarian R., Haslinger A., Valenzuela P., Welch J., Fogel S. Primary structure and transcription of an amplified genetic locus: the CUP1 locus of yeast. Proc Natl Acad Sci U S A. 1984 Jan;81(2):337–341. doi: 10.1073/pnas.81.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Laurie-Ahlberg C. C., Maroni G., Bewley G. C., Lucchesi J. C., Weir B. S. Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1073–1077. doi: 10.1073/pnas.77.2.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ohta T. Simulating evolution by gene duplication. Genetics. 1987 Jan;115(1):207–213. doi: 10.1093/genetics/115.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Otto E., Allen J. M., Young J. E., Palmiter R. D., Maroni G. A DNA segment controlling metal-regulated expression of the Drosophila melanogaster metallothionein gene Mtn. Mol Cell Biol. 1987 May;7(5):1710–1715. doi: 10.1128/mcb.7.5.1710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Otto E., Young J. E., Maroni G. Structure and expression of a tandem duplication of the Drosophila metallothionein gene. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6025–6029. doi: 10.1073/pnas.83.16.6025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Shapira S. K., Finnerty V. G. The use of genetic complementation in the study of eukaryotic macromolecular evolution: rate of spontaneous gene duplication at two loci of Drosophila melanogaster. J Mol Evol. 1986;23(2):159–167. doi: 10.1007/BF02099910. [DOI] [PubMed] [Google Scholar]
  8. Slightom J. L., Blechl A. E., Smithies O. Human fetal G gamma- and A gamma-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell. 1980 Oct;21(3):627–638. doi: 10.1016/0092-8674(80)90426-2. [DOI] [PubMed] [Google Scholar]
  9. Wallace B. Drosophila melanogaster populations selected for resistance to NaCl and CuSo4 in both allopatry and sympatry. J Hered. 1982 Jan-Feb;73(1):35–42. doi: 10.1093/oxfordjournals.jhered.a109572. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES