Skip to main content
Genetics logoLink to Genetics
. 1988 Feb;118(2):307–317. doi: 10.1093/genetics/118.2.307

G-Band Position Effects on Meiotic Synapsis and Crossing over

T Ashley 1
PMCID: PMC1203283  PMID: 3360306

Abstract

An examination of synaptic data from a series of X-autosome translocations and crossover data from an extensive series of autosome-autosome translocations and autosomal inversions in mice has lead to the development of a hypothesis which predicts synaptic and recombinational behavior of chromosomal aberrations during meiosis. This hypothesis predicts that in heterozygotes for chromosomal rearrangements that meiotically align G-light chromatin with G-light chromatin lack of homology will be recognized. If homologous synapsis cannot proceed, synaptonemal complex formation will cease and there will be no physical suppression of crossing over in such rearrangements. However, if a chromosomal rearrangement aligns G-light chromatin with G-dark chromatin at the time of synapsis, lack of homology will not be recognized and synaptonemal complex formation will proceed nonhomologously through the G-dark chromatin. Crossing over will be physically suppressed in this region and this suppression of crossing over will be confined to the chromosome in which the G-light chromatin is nonhomologously synapsed with G-dark chromatin. When G-light chromatin is once again aligned with G-light chromatin, lack of homology again will be recognized and either homologous synapsis will be reinitiated (as in an inversion loop), or will cease altogether (as in some translocations). Unlike the previously described ``synaptic adjustment,'' this nonhomologous synapsis of G-light with G-dark chromatin appears to compete with homologous synapsis during early pachynema.

Full Text

The Full Text of this article is available as a PDF (964.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashley T., Russell L. B. A new type of nonhomologous synapsis in T(X;4)1R1 translocation male mice. Cytogenet Cell Genet. 1986;43(3-4):194–200. doi: 10.1159/000132320. [DOI] [PubMed] [Google Scholar]
  2. Chandley A. C. A model for effective pairing and recombination at meiosis based on early replicating sites (R-bands) along chromosomes. Hum Genet. 1986 Jan;72(1):50–57. doi: 10.1007/BF00278817. [DOI] [PubMed] [Google Scholar]
  3. Holmquist G., Gray M., Porter T., Jordan J. Characterization of Giemsa dark- and light-band DNA. Cell. 1982 Nov;31(1):121–129. doi: 10.1016/0092-8674(82)90411-1. [DOI] [PubMed] [Google Scholar]
  4. JOHNSON D. R. Hairpin-tail: a case of post-reductional gene action in the mouse egg. Genetics. 1974 Apr;76(4):795–805. doi: 10.1093/genetics/76.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johnson D. R. Further observations on the haipin-tail (Thp) mutation in the mouse. Genet Res. 1974 Oct;24(2):207–213. doi: 10.1017/s0016672300015226. [DOI] [PubMed] [Google Scholar]
  6. Lyon M. F., Bechtol K. B. Derivation of mutant t-haplotypes of the mouse by presumed duplication or deletion. Genet Res. 1977 Aug;30(1):63–76. doi: 10.1017/s0016672300017468. [DOI] [PubMed] [Google Scholar]
  7. Lyon M. F., Glenister P. H. Factors affecting the observed number of young resulting from adjacent-2 disjunction in mice carrying a translocation. Genet Res. 1977 Feb;29(1):83–92. doi: 10.1017/s0016672300017134. [DOI] [PubMed] [Google Scholar]
  8. Moses M. J., Poorman P. A., Dresser M. E., DeWeese G. K., Gibson J. B. The synaptonemal complex in meiosis: significance of induced perturbations. Basic Life Sci. 1985;36:337–352. doi: 10.1007/978-1-4613-2127-9_23. [DOI] [PubMed] [Google Scholar]
  9. Moses M. J., Poorman P. A., Roderick T. H., Davisson M. T. Synaptonemal complex analysis of mouse chromosomal rearrangements. IV. Synapsis and synaptic adjustment in two paracentric inversions. Chromosoma. 1982;84(4):457–474. doi: 10.1007/BF00292848. [DOI] [PubMed] [Google Scholar]
  10. Moses M. J., Poorman P. A. Synaptosomal complex analysis of mouse chromosomal rearrangements. II. Synaptic adjustment in a tandem duplication. Chromosoma. 1981;81(4):519–535. doi: 10.1007/BF00285847. [DOI] [PubMed] [Google Scholar]
  11. Poorman P. A., Moses M. J., Davisson M. T., Roderick T. H. Synaptonemal complex analysis of mouse chromosomal rearrangements. III. Cytogenetic observations on two paracentric inversions. Chromosoma. 1981;83(3):419–429. doi: 10.1007/BF00327363. [DOI] [PubMed] [Google Scholar]
  12. Poorman P. A., Moses M. J., Russell L. B., Cacheiro N. L. Synaptonemal complex analysis of mouse chromosomal rearrangements. I. Cytogenetic observations on a tandem duplication. Chromosoma. 1981;81(4):507–518. doi: 10.1007/BF00285846. [DOI] [PubMed] [Google Scholar]
  13. Roderick T. H., Hawes N. L. Nineteen paracentric chromosomal inversions in mice. Genetics. 1974 Jan;76(1):109–117. doi: 10.1093/genetics/76.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stack S. M. Heterochromatin, the synaptonemal complex and crossing over. J Cell Sci. 1984 Oct;71:159–176. doi: 10.1242/jcs.71.1.159. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES