Skip to main content
Genetics logoLink to Genetics
. 1988 Apr;118(4):627–636. doi: 10.1093/genetics/118.4.627

Pronuclear Fusion Failure: An Alternate Conjugational Pathway in Tetrahymena Thermophila, Induced by Vinblastine

E P Hamilton 1, P B Suhr-Jessen 1, E Orias 1
PMCID: PMC1203318  PMID: 3366365

Abstract

Vinblastine is shown to induce pronuclear fusion failure in conjugating Tetrahymena thermophila. In this alternate conjugational pathway gametic pronuclei are exchanged between conjugants but do not fuse. Each pronucleus undergoes one mitotic division to produce a new macro- and micronucleus. Genetic consequences of pronuclear fusion failure include the following: (1) the progeny are whole genome homozygotes with nuclei derived from single meiotic products, and (2) half of the progeny are heterokaryons with micro- and macronuclei of different genetic origins. These facts make this process extremely useful in strain construction and mutant isolation. The induction of pronuclear fusion failure by vinblastine suggests that microtubules play an essential role in pronuclear fusion.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aist J. R., Williams P. H. Ultrastructure and time course of mitosis in the fungus Fusarium oxysporum. J Cell Biol. 1972 Nov;55(2):368–389. doi: 10.1083/jcb.55.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruns P. J., Sanford Y. M. Mass isolation and fertility testing of temperature-sensitive mutants in Tetrahymena. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3355–3358. doi: 10.1073/pnas.75.7.3355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byrne B. C., Brussard T. B., Bruns P. J. Induced resistance to 6-methylpurine and cycloheximide in tetrahymena. I. Germ line mutants of T. thermophila. Genetics. 1978 Aug;89(4):695–702. doi: 10.1093/genetics/89.4.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conde J., Fink G. R. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3651–3655. doi: 10.1073/pnas.73.10.3651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Delgado M. A., Conde J. Benomyl prevents nuclear fusion in Saccharomyces cerevisiae. Mol Gen Genet. 1984;193(1):188–189. doi: 10.1007/BF00327435. [DOI] [PubMed] [Google Scholar]
  6. Doerder F. P., Debault L. E. Cytofluorimetric analysis of nuclear DNA during meiosis, fertilization and macronuclear development in the ciliate Tetrahymena pyriformis, syngen 1. J Cell Sci. 1975 May;17(3):471–493. doi: 10.1242/jcs.17.3.471. [DOI] [PubMed] [Google Scholar]
  7. Gorovsky M. A. Macro- and micronuclei of Tetrahymena pyriformis: a model system for studying the structure and function of eukaryotic nuclei. J Protozool. 1973 Feb;20(1):19–25. doi: 10.1111/j.1550-7408.1973.tb05995.x. [DOI] [PubMed] [Google Scholar]
  8. Hamilton E. P., Suhr-Jessen P. B. Autoradiographic evidence for self-fertilization in Tetrahymena thermophila. Exp Cell Res. 1980 Apr;126(2):391–396. doi: 10.1016/0014-4827(80)90278-5. [DOI] [PubMed] [Google Scholar]
  9. Kaczanowski A., Gaertig J., Kubiak J. Effect of the antitubulin drug nocodazole on meiosis and postmeiotic development in Tetrahymena thermophila. Induction of achiasmatic meiosis. Exp Cell Res. 1985 May;158(1):244–256. doi: 10.1016/0014-4827(85)90447-1. [DOI] [PubMed] [Google Scholar]
  10. Lanners H. N. Pronuclei of Heliophrya erhardi Matthes during conjugation and their differential association with coated and uncoated microtubules. J Cell Sci. 1980 Oct;45:245–255. doi: 10.1242/jcs.45.1.245. [DOI] [PubMed] [Google Scholar]
  11. Mayo K. A., Orias E. Further evidence for lack of gene expression in the Tetrahymena micronucleus. Genetics. 1981 Aug;98(4):747–762. doi: 10.1093/genetics/98.4.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McDonald B. B. The exchange of RNA and protein during conjugation in Tetrahymena. J Protozool. 1966 May;13(2):277–285. doi: 10.1111/j.1550-7408.1966.tb01908.x. [DOI] [PubMed] [Google Scholar]
  13. Messier P. E. Microtubules, interkinetic nuclear migration and neurulation. Experientia. 1978 Mar 15;34(3):289–296. doi: 10.1007/BF01922992. [DOI] [PubMed] [Google Scholar]
  14. Oakley B. R., Morris N. R. Nuclear movement is beta--tubulin-dependent in Aspergillus nidulans. Cell. 1980 Jan;19(1):255–262. doi: 10.1016/0092-8674(80)90407-9. [DOI] [PubMed] [Google Scholar]
  15. Orias E., Bruns P. J. Induction and isolation of mutants in Tetrahymena. Methods Cell Biol. 1976;13:247–282. [PubMed] [Google Scholar]
  16. Orias E., Hamilton E. P. Cytogamy: An Inducible, Alternate Pathway of Conjugation in TETRAHYMENA THERMOPHILA. Genetics. 1979 Apr;91(4):657–671. doi: 10.1093/genetics/91.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Orias E., Hamilton E. P., Flacks M. Osmotic shock prevents nuclear exchange and produces whole-genome homozygotes in conjugating Tetrahymena. Science. 1979 Feb 16;203(4381):660–663. doi: 10.1126/science.760210. [DOI] [PubMed] [Google Scholar]
  18. Orias J. D., Hamilton E. P., Orias E. A microtubule meshwork associated with gametic pronucleus transfer across a cell-cell junction. Science. 1983 Oct 14;222(4620):181–184. doi: 10.1126/science.6623070. [DOI] [PubMed] [Google Scholar]
  19. Roberts C. T., Jr, Morse D. E. Galactokinase-deficient mutants of Tetrahymena thermophila: selection and characterization. Mol Gen Genet. 1980;180(1):129–134. doi: 10.1007/BF00267361. [DOI] [PubMed] [Google Scholar]
  20. Roberts C. T., Jr, Orias E. A cycloheximide-resistant mutant of Tetrahymena pyriformis. Exp Cell Res. 1973 Oct;81(2):312–316. doi: 10.1016/0014-4827(73)90520-x. [DOI] [PubMed] [Google Scholar]
  21. Schatten G., Schatten H. Effects of motility inhibitors during sea urchin fertilization: microfilament inhibitors prevent sperm incorporation and restructuring of fertilized egg cortex, whereas microtubule inhibitors prevent pronuclear migrations. Exp Cell Res. 1981 Oct;135(2):311–330. doi: 10.1016/0014-4827(81)90167-1. [DOI] [PubMed] [Google Scholar]
  22. Schatten G. The supramolecular organization of the cytoskeleton during fertilization. Subcell Biochem. 1984;10:359–453. doi: 10.1007/978-1-4613-2709-7_6. [DOI] [PubMed] [Google Scholar]
  23. Schatten H., Schatten G., Petzelt C., Mazia D. Effects of griseofulvin on fertilization and early development of sea urchins. Independence of DNA synthesis, chromosome condensation, and cytokinesis cycles from microtubule-mediated events. Eur J Cell Biol. 1982 Apr;27(1):74–87. [PubMed] [Google Scholar]
  24. Szabo S. P., O'Day D. H. The fusion of sexual nuclei. Biol Rev Camb Philos Soc. 1983 Aug;58(3):323–342. doi: 10.1111/j.1469-185x.1983.tb00393.x. [DOI] [PubMed] [Google Scholar]
  25. Wassarman P. M. The biology and chemistry of fertilization. Science. 1987 Jan 30;235(4788):553–560. doi: 10.1126/science.3027891. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES