Skip to main content
Genetics logoLink to Genetics
. 1988 Apr;118(4):637–648. doi: 10.1093/genetics/118.4.637

Genetic Analysis of Long-Flagella Mutants of Chlamydomonas Reinhardtii

S E Barsel 1, D E Wexler 1, P A Lefebvre 1
PMCID: PMC1203319  PMID: 3366366

Abstract

The length of the flagella of Chlamydomonas reinhardtii cells is tightly regulated; both short-flagella and long-flagella mutants have been described. This report characterizes ten long-flagella mutants, including five newly isolated mutants, to determine the number of different loci conferring this phenotype, and to study interactions of mutants at different loci. The mutants, each of which was recessive in heterozygous diploids with wild type, fall into three unlinked complementation groups. One of these defines a new gene, lf3, which maps near the centromere of linkage group I. The flagellar length distributions in populations of each mutant were broad, with the longest flagella measuring four times the length of the longest flagella seen on wild-type cells. Each of the ten mutants had defective flagellar regrowth after amputation. Some of the mutants showed no regrowth within the time required for wild-type cells to regenerate flagella completely. Other mutants had subpopulations with rapid regeneration kinetics, and subpopulations with no observable regeneration. The mutants were each crossed to wild type to form temporary quadriflagellate, dikaryon cells; in each case the long flagella were rapidly shortened in the presence of the wild-type cytoplasm, demonstrating that the mutants were recessive, and that length control could be exerted on already assembled flagella.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cavalier-Smith T. Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J Cell Sci. 1974 Dec;16(3):529–556. doi: 10.1242/jcs.16.3.529. [DOI] [PubMed] [Google Scholar]
  2. Coyne B., Rosenbaum J. L. Flagellar elongation and shortening in chlamydomonas. II. Re-utilization of flagellar proteins. J Cell Biol. 1970 Dec;47(3):777–781. doi: 10.1083/jcb.47.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ebersold W. T. Chlamydomonas reinhardi: heterozygous diploid strains. Science. 1967 Jul 28;157(3787):447–449. doi: 10.1126/science.157.3787.447. [DOI] [PubMed] [Google Scholar]
  4. Fernández E., Matagne R. F. In vivo complementation analysis of nitrate reductase-deficient mutants in Chlamydomonas reinhardtii. Curr Genet. 1986;10(5):397–403. doi: 10.1007/BF00418413. [DOI] [PubMed] [Google Scholar]
  5. Huang B., Ramanis Z., Dutcher S. K., Luck D. J. Uniflagellar mutants of Chlamydomonas: evidence for the role of basal bodies in transmission of positional information. Cell. 1982 Jul;29(3):745–753. doi: 10.1016/0092-8674(82)90436-6. [DOI] [PubMed] [Google Scholar]
  6. Huang B., Rifkin M. R., Luck D. J. Temperature-sensitive mutations affecting flagellar assembly and function in Chlamydomonas reinhardtii. J Cell Biol. 1977 Jan;72(1):67–85. doi: 10.1083/jcb.72.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KATES J. R., JONES R. F. THE CONTROL OF GAMETIC DIFFERENTIATION IN LIQUID CULTURES OF CHLAMYDOMONAS. J Cell Physiol. 1964 Apr;63:157–164. doi: 10.1002/jcp.1030630204. [DOI] [PubMed] [Google Scholar]
  8. Kuchka M. R., Jarvik J. W. Short-Flagella Mutants of Chlamydomonas reinhardtii. Genetics. 1987 Apr;115(4):685–691. doi: 10.1093/genetics/115.4.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LEVINE R. P., EBERSOLD W. T. The genetics and cytology of Chlamydomonas. Annu Rev Microbiol. 1960;14:197–216. doi: 10.1146/annurev.mi.14.100160.001213. [DOI] [PubMed] [Google Scholar]
  10. Lefebvre P. A., Nordstrom S. A., Moulder J. E., Rosenbaum J. L. Flagellar elongation and shortening in Chlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. J Cell Biol. 1978 Jul;78(1):8–27. doi: 10.1083/jcb.78.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Luck D., Piperno G., Ramanis Z., Huang B. Flagellar mutants of Chlamydomonas: studies of radial spoke-defective strains by dikaryon and revertant analysis. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3456–3460. doi: 10.1073/pnas.74.8.3456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McVittie A. Flagellum mutants of Chlamydomonas reinhardii. J Gen Microbiol. 1972 Aug;71(3):525–540. doi: 10.1099/00221287-71-3-525. [DOI] [PubMed] [Google Scholar]
  13. Rosenbaum J. L., Moulder J. E., Ringo D. L. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. J Cell Biol. 1969 May;41(2):600–619. doi: 10.1083/jcb.41.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. SAGER R., GRANICK S. Nutritional studies with Chlamydomonas reinhardi. Ann N Y Acad Sci. 1953 Oct 14;56(5):831–838. doi: 10.1111/j.1749-6632.1953.tb30261.x. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES