Abstract
The transposable element, Tam3, gives rise to large-scale (greater than 1 kb) chromosomal rearrangements at a low frequency, when it is inserted at the nivea locus of Antirrhinum majus. Although some deletions may result from imprecise excision of Tam3, rearrangements involving deletion, dispersion and inverted duplication of flanking sequences, where Tam3 remains in situ, have also been identified. These rearrangements have been mapped at the molecular level, and the behavior of Tam3 following rearrangement has been observed. It is clear that Tam3 has enormous potential to restructure chromosomes through successive rounds of large-scale rearrangements. The mechanisms by which such rearrangements might arise are discussed.
Full Text
The Full Text of this article is available as a PDF (8.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bingham P. M. A novel dominant mutant allele at the white locus of Drosophila melanogaster is mutable. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):519–525. doi: 10.1101/sqb.1981.045.01.068. [DOI] [PubMed] [Google Scholar]
- Collins M., Rubin G. M. Structure of chromosomal rearrangements induced by the FB transposable element in Drosophila. Nature. 1984 Mar 22;308(5957):323–327. doi: 10.1038/308323a0. [DOI] [PubMed] [Google Scholar]
- Davis P. S., Shen M. W., Judd B. H. Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc Natl Acad Sci U S A. 1987 Jan;84(1):174–178. doi: 10.1073/pnas.84.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foster T. J., Lundblad V., Hanley-Way S., Halling S. M., Kleckner N. Three Tn10-associated excision events: relationship to transposition and role of direct and inverted repeats. Cell. 1981 Jan;23(1):215–227. doi: 10.1016/0092-8674(81)90286-5. [DOI] [PubMed] [Google Scholar]
- Green M. M., Shepherd S. H. Genetic instability in Drosophila melanogaster: the induction of specific chromosome 2 deletions by MR elements. Genetics. 1979 Jul;92(3):823–832. doi: 10.1093/genetics/92.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ising G., Block K. Derivation-dependent distribution of insertion sites for a Drosophila transposon. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):527–544. doi: 10.1101/sqb.1981.045.01.069. [DOI] [PubMed] [Google Scholar]
- Lim J. K., Simmons M. J., Raymond J. D., Cox N. M., Doll R. F., Culbert T. P. Homologue destabilization by a putative transposable element in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6624–6627. doi: 10.1073/pnas.80.21.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim J. K. Site-specific instability in Drosophila melanogaster: the origin of the mutation and cytogenetic evidence for site specificity. Genetics. 1979 Nov;93(3):681–701. doi: 10.1093/genetics/93.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lim J. K. Site-specific intrachromosomal rearrangements in Drosophila melanogaster: cytogenetic evidence for transposable elements. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):553–560. doi: 10.1101/sqb.1981.045.01.071. [DOI] [PubMed] [Google Scholar]
- Reif H. J., Saedler H. IS1 is involved in deletion formation in the gal region of E. coli K12. Mol Gen Genet. 1975;137(1):17–28. doi: 10.1007/BF00332538. [DOI] [PubMed] [Google Scholar]
- Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro J. A. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1933–1937. doi: 10.1073/pnas.76.4.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]