Skip to main content
Genetics logoLink to Genetics
. 1988 Jun;119(2):273–287. doi: 10.1093/genetics/119.2.273

Meiotic Disjunction of Homologs in Saccharomyces Cerevisiae Is Directed by Pairing and Recombination of the Chromosome Arms but Not by Pairing of the Centromeres

R T Surosky 1, B K Tye 1
PMCID: PMC1203411  PMID: 3294102

Abstract

We explored the behavior of meiotic chromosomes in Saccharomyces cerevisiae by examining the effects of chromosomal rearrangements on the pattern of disjunction and recombination of chromosome III during meiosis. The segregation of deletion chromosomes lacking part or all (telocentric) of one arm was analyzed in the presence of one or two copies of a normal chromosome III. In strains containing one normal and any one deletion chromosome, the two chromosomes disjoined in most meioses. In strains with one normal chromosome and both a left and right arm telocentric chromosome, the two telocentrics preferentially disjoined from the normal chromosome. Homology on one arm was sufficient to direct chromosome disjunction, and two chromosomes could be directed to disjoin from a third. In strains containing one deletion chromosome and two normal chromosomes, the two normal chromosomes preferentially disjoined, but in 4-7% of the tetrads the normal chromosomes cosegregated, disjoining from the deletion chromosome. Recombination between the two normal chromosomes or between the deletion chromosome and a normal chromosome increased the probability that these chromosomes would disjoin, although cosegregation of recombinants was observed. Finally, we observed that a derivative of chromosome III in which the centromeric region was deleted and CEN5 was integrated at another site on the chromosome disjoined from a normal chromosome III with fidelity. These studies demonstrate that it is not pairing of the centromeres, but pairing and recombination along the arms of the homologs, that directs meiotic chromosome segregation.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boeke J. D., LaCroute F., Fink G. R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. doi: 10.1007/BF00330984. [DOI] [PubMed] [Google Scholar]
  3. Boyer H. W., Roulland-Dussoix D. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol. 1969 May 14;41(3):459–472. doi: 10.1016/0022-2836(69)90288-5. [DOI] [PubMed] [Google Scholar]
  4. Buss M. E., Henderson S. A. The induction of orientational instability and bivalent interlocking at meiosis. Chromosoma. 1971;35(2):153–183. doi: 10.1007/BF00285735. [DOI] [PubMed] [Google Scholar]
  5. Clarke L., Carbon J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature. 1983 Sep 1;305(5929):23–28. doi: 10.1038/305023a0. [DOI] [PubMed] [Google Scholar]
  6. Cryer D. R., Eccleshall R., Marmur J. Isolation of yeast DNA. Methods Cell Biol. 1975;12:39–44. doi: 10.1016/s0091-679x(08)60950-4. [DOI] [PubMed] [Google Scholar]
  7. Dawes I. W., Hardie I. D. Selective killing of vegetative cells in sporulated yeast cultures by exposure to diethyl ether. Mol Gen Genet. 1974;131(4):281–289. doi: 10.1007/BF00264859. [DOI] [PubMed] [Google Scholar]
  8. Dawson D. S., Murray A. W., Szostak J. W. An alternative pathway for meiotic chromosome segregation in yeast. Science. 1986 Nov 7;234(4777):713–717. doi: 10.1126/science.3535068. [DOI] [PubMed] [Google Scholar]
  9. Game J. C., Zamb T. J., Braun R. J., Resnick M., Roth R. M. The Role of Radiation (rad) Genes in Meiotic Recombination in Yeast. Genetics. 1980 Jan;94(1):51–68. doi: 10.1093/genetics/94.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gillies C. B. Synaptonemal complex and chromosome structure. Annu Rev Genet. 1975;9:91–109. doi: 10.1146/annurev.ge.09.120175.000515. [DOI] [PubMed] [Google Scholar]
  11. Hinnen A., Hicks J. B., Fink G. R. Transformation of yeast. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1929–1933. doi: 10.1073/pnas.75.4.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klapholz S., Esposito R. E. Chromosomes XIV and XVII of Saccharomyces cerevisiae constitute a single linkage group. Mol Cell Biol. 1982 Nov;2(11):1399–1409. doi: 10.1128/mcb.2.11.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klapholz S., Esposito R. E. Isolation of SPO12-1 and SPO13-1 from a natural variant of yeast that undergoes a single meiotic division. Genetics. 1980 Nov;96(3):567–588. doi: 10.1093/genetics/96.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Klapholz S., Esposito R. E. Recombination and chromosome segregation during the single division meiosis in SPO12-1 and SPO13-1 diploids. Genetics. 1980 Nov;96(3):589–611. doi: 10.1093/genetics/96.3.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Malone R. E., Esposito R. E. Recombinationless meiosis in Saccharomyces cerevisiae. Mol Cell Biol. 1981 Oct;1(10):891–901. doi: 10.1128/mcb.1.10.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moens P. B. The fine structure of meiotic chromosome pairing in the triploid, Lilium tigrinum. J Cell Biol. 1969 Jan;40(1):273–279. doi: 10.1083/jcb.40.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moens P. B. The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes. Chromosoma. 1969;28(1):1–25. doi: 10.1007/BF00325986. [DOI] [PubMed] [Google Scholar]
  18. Mortimer R. K., Schild D. Genetic map of Saccharomyces cerevisiae. Microbiol Rev. 1980 Dec;44(4):519–571. doi: 10.1128/mr.44.4.519-571.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Murray A. W., Szostak J. W. Construction of artificial chromosomes in yeast. Nature. 1983 Sep 15;305(5931):189–193. doi: 10.1038/305189a0. [DOI] [PubMed] [Google Scholar]
  20. Nicklas R. B. Chromosome micromanipulation. II. Induced reorientation and the experimental control of segregation in meiosis. Chromosoma. 1967;21(1):17–50. doi: 10.1007/BF00330545. [DOI] [PubMed] [Google Scholar]
  21. Nicklas R. B. Chromosome segregation mechanisms. Genetics. 1974 Sep;78(1):205–213. doi: 10.1093/genetics/78.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nicklas R. B., Koch C. A. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J Cell Biol. 1969 Oct;43(1):40–50. doi: 10.1083/jcb.43.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  24. Roman H., Sands S. M. Heterogeneity of Clones of Saccharomyces Derived from Haploid Ascospores. Proc Natl Acad Sci U S A. 1953 Mar;39(3):171–179. doi: 10.1073/pnas.39.3.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shaffer B., Brearley I., Littlewood R., Fink G. R. A stable aneuploid of Saccharomyces cerevisiae. Genetics. 1971 Apr;67(4):483–495. doi: 10.1093/genetics/67.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sora S., Lucchini G., Magni G. E. Meiotic Diploid Progeny and Meiotic Nondisjunction in SACCHAROMYCES CEREVISIAE. Genetics. 1982 May;101(1):17–33. doi: 10.1093/genetics/101.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Surosky R. T., Newlon C. S., Tye B. K. The mitotic stability of deletion derivatives of chromosome III in yeast. Proc Natl Acad Sci U S A. 1986 Jan;83(2):414–418. doi: 10.1073/pnas.83.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Surosky R. T., Tye B. K. Resolution of dicentric chromosomes by Ty-mediated recombination in yeast. Genetics. 1985 Jul;110(3):397–419. doi: 10.1093/genetics/110.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Westergaard M., von Wettstein D. Studies on the mechanism of crossing over. IV. The molecular organization of the synaptinemal complex in Neottiella (Cooke) saccardo (Ascomycetes). C R Trav Lab Carlsberg. 1970;37(11):239–268. [PubMed] [Google Scholar]
  30. Zakian V. A., Blanton H. M., Wetzel L., Dani G. M. Size threshold for Saccharomyces cerevisiae chromosomes: generation of telocentric chromosomes from an unstable minichromosome. Mol Cell Biol. 1986 Mar;6(3):925–932. doi: 10.1128/mcb.6.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES