Skip to main content
Genetics logoLink to Genetics
. 1988 Jun;119(2):317–327. doi: 10.1093/genetics/119.2.317

Crl Mutants of Saccharomyces Cerevisiae Resemble Both Mutants Affecting General Control of Amino Acid Biosynthesis and Omnipotent Translational Suppressor Mutants

J H McCusker 1, J E Haber 1
PMCID: PMC1203414  PMID: 3294104

Abstract

Cyocloheximide resistant lethal (crl) mutants of Saccharomyces cerevisiae, defining 22 unlinked complementation groups, are unable to grow at 37°. They are also highly pleiotropic at their permissive temperature of 25°. The mutants are all unable to arrest at the G(1) stage of the cell cycle when grown to stationary phase or when starved for a single amino acid, though they do arrest at G1 when deprived of all nitrogen. The crl mutants are also hypersensitive to various amino acid analogs and to 3-aminotriazole. These mutants also ``tighten'' leaky auxotrophic mutations that permit wild-type cells to grow in the absence of the appropriate amino acid. All of these phenotypes are also exhibited by gcn mutants affecting general control of amino acid biosynthesis. In addition, the crl mutants are all hypersensitive to hygromycin B, an aminoglycoside antibiotic that stimulates translational misreading. The crl mutations also suppress one nonsense mutation which is phenotypically suppressed by hygromycin B. Many crl mutants are also osmotically sensitive. These are phenotypes which the crl mutations have in common with previously isolated omnipotent suppressors. We suggest that the the crl mutations all affect the fidelity of protein translation.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chattoo B. B., Palmer E., Ono B., Sherman F. Patterns of Genetic and Phenotypic Suppression of lys2 Mutations in the Yeast SACCHAROMYCES CEREVISIAE. Genetics. 1979 Sep;93(1):67–79. doi: 10.1093/genetics/93.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chattoo B. B., Sherman F., Azubalis D. A., Fjellstedt T. A., Mehnert D., Ogur M. Selection of lys2 Mutants of the Yeast SACCHAROMYCES CEREVISIAE by the Utilization of alpha-AMINOADIPATE. Genetics. 1979 Sep;93(1):51–65. doi: 10.1093/genetics/93.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ernst J. F., Chan R. K. Characterization of Saccharomyces cerevisiae mutants supersensitive to aminoglycoside antibiotics. J Bacteriol. 1985 Jul;163(1):8–14. doi: 10.1128/jb.163.1.8-14.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eustice D. C., Wakem L. P., Wilhelm J. M., Sherman F. Altered 40 S ribosomal subunits in omnipotent suppressors of yeast. J Mol Biol. 1986 Mar 20;188(2):207–214. doi: 10.1016/0022-2836(86)90305-0. [DOI] [PubMed] [Google Scholar]
  5. Gallant J. A. Stringent control in E. coli. Annu Rev Genet. 1979;13:393–415. doi: 10.1146/annurev.ge.13.120179.002141. [DOI] [PubMed] [Google Scholar]
  6. Gallant J., Erlich H., Weiss R., Palmer L., Nyari L. Nonsense suppression in aminoacyl-t-RNA limited cells. Mol Gen Genet. 1982;186(2):221–227. doi: 10.1007/BF00331853. [DOI] [PubMed] [Google Scholar]
  7. Gorini L. Ribosomal discrimination of tRNAs. Nat New Biol. 1971 Dec 29;234(52):261–264. doi: 10.1038/newbio234261a0. [DOI] [PubMed] [Google Scholar]
  8. Greenberg M. L., Myers P. L., Skvirsky R. C., Greer H. New positive and negative regulators for general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol. 1986 May;6(5):1820–1829. doi: 10.1128/mcb.6.5.1820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HAWTHORNE D. C., FRIIS J. OSMOTIC-REMEDIAL MUTANTS. A NEW CLASSIFICATION FOR NUTRITIONAL MUTANTS IN YEAST. Genetics. 1964 Nov;50:829–839. doi: 10.1093/genetics/50.5.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hawthorne D. C., Leupold U. Suppressors in yeast. Curr Top Microbiol Immunol. 1974;64(0):1–47. doi: 10.1007/978-3-642-65848-8_1. [DOI] [PubMed] [Google Scholar]
  11. Hecker M., Schroeter A., Träder K., Mach F. Role of relA mutation in the survival of amino acid-starved Escherichia coli. Arch Microbiol. 1986 Jan;143(4):400–402. doi: 10.1007/BF00412809. [DOI] [PubMed] [Google Scholar]
  12. Himmelfarb H. J., Maicas E., Friesen J. D. Isolation of the SUP45 omnipotent suppressor gene of Saccharomyces cerevisiae and characterization of its gene product. Mol Cell Biol. 1985 Apr;5(4):816–822. doi: 10.1128/mcb.5.4.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hinnebusch A. G. A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Sep;5(9):2349–2360. doi: 10.1128/mcb.5.9.2349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hinnebusch A. G. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6442–6446. doi: 10.1073/pnas.81.20.6442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hinnebusch A. G., Fink G. R. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5374–5378. doi: 10.1073/pnas.80.17.5374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ishiguro J., Ono B. I., Masurekar M., McLaughlin C. S., Sherman F. Altered ribosomal protein S11 from the SUP46 suppressor of yeast. J Mol Biol. 1981 Apr 15;147(3):391–397. doi: 10.1016/0022-2836(81)90491-5. [DOI] [PubMed] [Google Scholar]
  17. Kane S. M., Roth R. Carbohydrate metabolism during ascospore development in yeast. J Bacteriol. 1974 Apr;118(1):8–14. doi: 10.1128/jb.118.1.8-14.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liebman S. W., Cavenagh M. An antisuppressor that acts on omnipotent suppressors in yeast. Genetics. 1980 May;95(1):49–61. doi: 10.1093/genetics/95.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lillie S. H., Pringle J. R. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980 Sep;143(3):1384–1394. doi: 10.1128/jb.143.3.1384-1394.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lucchini G., Hinnebusch A. G., Chen C., Fink G. R. Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae. Mol Cell Biol. 1984 Jul;4(7):1326–1333. doi: 10.1128/mcb.4.7.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lusby E. W., Jr, McLaughlin C. S. The effect of amino acid starvation on a major, acid soluble compound on Saccharomyces cerevisiae. Mol Gen Genet. 1980;179(3):699–701. doi: 10.1007/BF00271760. [DOI] [PubMed] [Google Scholar]
  22. Masurekar M., Palmer E., Ono B. I., Wilhelm J. M., Sherman F. Misreading of the ribosomal suppressor SUP46 due to an altered 40 S subunit in yeast. J Mol Biol. 1981 Apr 15;147(3):381–390. doi: 10.1016/0022-2836(81)90490-3. [DOI] [PubMed] [Google Scholar]
  23. McCusker J. H., Haber J. E. Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae. Genetics. 1988 Jun;119(2):303–315. doi: 10.1093/genetics/119.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Niederberger P., Miozzari G., Hütter R. Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol. 1981 Jul;1(7):584–593. doi: 10.1128/mcb.1.7.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ono B. I., Stewart J. W., Sherman F. Serine insertion caused by the ribosomal suppressor SUP46 in yeast. J Mol Biol. 1981 Apr 15;147(3):373–379. doi: 10.1016/0022-2836(81)90489-7. [DOI] [PubMed] [Google Scholar]
  26. Ono B., Ishino-Arao Y., Tanaka M., Awano I., Shinoda S. Recessive nonsense suppressors in Saccharomyces cerevisiae: action spectra, complementation groups and map positions. Genetics. 1986 Oct;114(2):363–374. doi: 10.1093/genetics/114.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ono B., Moriga N., Ishihara K., Ishiguro J., Ishino Y., Shinoda S. Omnipotent Suppressors Effective in psi Strains of SACCHAROMYCES CEREVISIAE: Recessiveness and Dominance. Genetics. 1984 Jun;107(2):219–230. doi: 10.1093/genetics/107.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Palmer E., Wilhelm J. M., Sherman F. Phenotypic suppression of nonsense mutants in yeast by aminoglycoside antibiotics. Nature. 1979 Jan 11;277(5692):148–150. doi: 10.1038/277148a0. [DOI] [PubMed] [Google Scholar]
  29. Penn M. D., Galgoci B., Greer H. Identification of AAS genes and their regulatory role in general control of amino acid biosynthesis in yeast. Proc Natl Acad Sci U S A. 1983 May;80(9):2704–2708. doi: 10.1073/pnas.80.9.2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schürch A., Miozzari J., Hütter R. Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae: mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan-sensitive mutants. J Bacteriol. 1974 Mar;117(3):1131–1140. doi: 10.1128/jb.117.3.1131-1140.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Singh A. Nonsense suppressors of yeast cause osmotic-sensitive growth. Proc Natl Acad Sci U S A. 1977 Jan;74(1):305–309. doi: 10.1073/pnas.74.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Singh A., Ursic D., Davies J. Phenotypic suppression and misreading Saccharomyces cerevisiae. Nature. 1979 Jan 11;277(5692):146–148. doi: 10.1038/277146a0. [DOI] [PubMed] [Google Scholar]
  33. Toda T., Uno I., Ishikawa T., Powers S., Kataoka T., Broek D., Cameron S., Broach J., Matsumoto K., Wigler M. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell. 1985 Jan;40(1):27–36. doi: 10.1016/0092-8674(85)90305-8. [DOI] [PubMed] [Google Scholar]
  34. Warner J. R., Gorenstein C. Yeast has a true stringent response. Nature. 1978 Sep 28;275(5678):338–339. doi: 10.1038/275338a0. [DOI] [PubMed] [Google Scholar]
  35. Weiss R. B., Gallant J. A. Frameshift suppression in aminoacyl-tRNA limited cells. Genetics. 1986 Apr;112(4):727–739. doi: 10.1093/genetics/112.4.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Whiteway M., Szostak J. W. The ARD1 gene of yeast functions in the switch between the mitotic cell cycle and alternative developmental pathways. Cell. 1985 Dec;43(2 Pt 1):483–492. doi: 10.1016/0092-8674(85)90178-3. [DOI] [PubMed] [Google Scholar]
  37. Wolfner M., Yep D., Messenguy F., Fink G. R. Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J Mol Biol. 1975 Aug 5;96(2):273–290. doi: 10.1016/0022-2836(75)90348-4. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES