Abstract
In the gene b2 of Ascobolus immersus, large heterologies increase the frequencies of reciprocal exchanges on their upstream border (corresponding to the high non-Mendelian segregation side). Tests were made to determine whether these reciprocal exchanges, instigated by large heterologies, resulted from the blockage of a Holliday junction bordering a hybrid DNA tract extending from the end of the gene to the heterology. Three types of experiments were performed to answer this question. In all cases, results did not correlate the presence of reciprocal exchanges instigated by large heterologies with the presence of adjacent hybrid DNA tracts. These reciprocal exchanges were rarely associated with postmeiotic segregation at upstream markers, they were not associated with gene conversion of a marker within the interval and their frequency was not decreased by decreasing the frequency of hybrid DNA formation in the gene. These results led to the proposal of the existence of a precursor to reciprocal exchange different from a single branch-migrating Holliday junction. This precursor migrates rightward and its migration is dependent on the DNA sequence homology. The existence of this precursor does not exclude that reciprocal exchanges resulting from the maturation of single Holliday junctions bordering adjacent hybrid DNA tracts could also occur.
Full Text
The Full Text of this article is available as a PDF (695.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell L. R., Byers B. Homologous association of chromosomal DNA during yeast meiosis. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 2):829–840. doi: 10.1101/sqb.1983.047.01.095. [DOI] [PubMed] [Google Scholar]
- Hamza H., Kalogeropoulos A., Nicolas A., Rossignol J. L. Two mechanisms for directional gene conversion. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7386–7390. doi: 10.1073/pnas.83.19.7386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamza H., Nicolas A., Rossignol J. L. Large Heterologies Impose Their Gene Conversion Pattern onto Closely Linked Point Mutations. Genetics. 1987 May;116(1):45–53. doi: 10.1093/genetics/116.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hastings P. J. Measurement of restoration and conversion: its meaning for the mismatch repair hypothesis of conversion. Cold Spring Harb Symp Quant Biol. 1984;49:49–53. doi: 10.1101/sqb.1984.049.01.008. [DOI] [PubMed] [Google Scholar]
- Holliday R. Molecular aspects of genetic exchange and gene conversion. Genetics. 1974 Sep;78(1):273–287. doi: 10.1093/genetics/78.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leblon G., Paquette N. Intragenic suppression at the b2 locus in Ascobolus immersus. I. Identification of three distinct groups of suppression. Genetics. 1978 Nov;90(3):475–488. doi: 10.1093/genetics/90.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolas A., Hamza H., Mekki-Berrada A., Kalogeropoulos A., Rossignol J. L. Premeiotic and Meiotic Instability Generates Numerous b2 Mutation Derivatives in Ascobolus. Genetics. 1987 May;116(1):33–43. doi: 10.1093/genetics/116.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossignol J. L., Paquette N. Disparity of gene conversion in frameshift mutants located in locus b2 of Ascobolus immersus. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2871–2875. doi: 10.1073/pnas.76.6.2871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobell H. M. Molecular mechanism for genetic recombination. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2483–2487. doi: 10.1073/pnas.69.9.2483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]