Skip to main content
Genetics logoLink to Genetics
. 1988 Jul;119(3):477–484. doi: 10.1093/genetics/119.3.477

Domains for Protein-Protein Interactions at the N and C Termini of the Large Subunit of Bacteriophage λ Terminase

W F Wu 1, S Christiansen 1, M Feiss 1
PMCID: PMC1203432  PMID: 2969839

Abstract

The large subunit of phage λ terminase, gpA, the gene product of the phage A gene, interacts with the small subunit, gpNu1, to form functional terminase. Terminase binds to λ DNA at cosB to form a binary complex. The terminase:DNA complex binds a prohead to form a ternary complex. Ternary complex formation involves an interaction of the prohead with gpA. The amino terminus of gpA contains a functional domain for interaction with gpNu1, and the carboxy-terminal 38 amino acids of gpA contain a functional domain for prohead binding. This information about the structure of gpA was obtained through the use of hybrid phages resulting from recombination between λ and the related phage 21. λ and 21 encode terminases that are analogous in structural organization and have ca. 60% sequence identity. In spite of these similarities, λ and 21 terminases differ in specificity for DNA binding, subunit assembly, and prohead binding. A λ-21 hybrid phage produces a terminase in which one of the subunits is chimeric and had recombinant specificities. In the work reported here; a new hybrid, λ-21 hybrid 67, is characterized. λ-21 hybrid 67 is the result of a crossover between λ and 21 in the large subunit genes, such that the DNA from the left chromosome end is from 21, including cosBφ21, the 1 gene, and the first 48 codons for the 2 gene. The rest of the hybrid 67 chromosome is λ DNA, including 593 codons of the A gene. The chimeric gp2/A of hybrid 67 binds gp1 to form functional terminase. It is concluded that the specificity determinants for small subunit binding reside in the N-terminal 48 amino acids of gpA and gp2. The primary structures of these 48 amino acid segments of gpA and gp2 are quite different, especially in the first half and the predicted secondary structures are also quite different. The DNA sequence of the prohead binding domain of gp2 was determined. The derived amino acid sequence was found to be quite different from the λ prohead binding domain for the C-terminal 32 amino acids, but the predicted secondary structures were found to be similar. It is suggested that these small functional domains, found at the termini of the gpA polypeptide chain, act as ``straps'' in protein-protein assemblies.

Full Text

The Full Text of this article is available as a PDF (841.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker E. N. Structure of actinidin, after refinement at 1.7 A resolution. J Mol Biol. 1980 Aug 25;141(4):441–484. doi: 10.1016/0022-2836(80)90255-7. [DOI] [PubMed] [Google Scholar]
  2. Becker A., Gold M. Enzymatic breakage of the cohesive end site of phage lambda DNA: terminase (ter) reaction. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4199–4203. doi: 10.1073/pnas.75.9.4199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CAMPBELL A. Sensitive mutants of bacteriophage lambda. Virology. 1961 May;14:22–32. doi: 10.1016/0042-6822(61)90128-3. [DOI] [PubMed] [Google Scholar]
  4. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  5. Feiss M., Fisher R. A., Crayton M. A., Egner C. Packaging of the bacteriophage lambda chromosome: effect of chromosome length. Virology. 1977 Mar;77(1):281–293. doi: 10.1016/0042-6822(77)90425-1. [DOI] [PubMed] [Google Scholar]
  6. Feiss M., Siegele D. A., Rudolph C. F., Frackman S. Cosmid DNA packaging in vivo. Gene. 1982 Feb;17(2):123–130. doi: 10.1016/0378-1119(82)90064-6. [DOI] [PubMed] [Google Scholar]
  7. Feiss M., Widner W. Bacteriophage lambda DNA packaging: scanning for the terminal cohesive end site during packaging. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3498–3502. doi: 10.1073/pnas.79.11.3498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feiss M., Widner W., Miller G., Johnson G., Christiansen S. Structure of the bacteriophage lambda cohesive end site: location of the sites of terminase binding (cosB) and nicking (cosN). Gene. 1983 Oct;24(2-3):207–218. doi: 10.1016/0378-1119(83)90081-1. [DOI] [PubMed] [Google Scholar]
  9. Ford G. C., Eichele G., Jansonius J. N. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. Proc Natl Acad Sci U S A. 1980 May;77(5):2559–2563. doi: 10.1073/pnas.77.5.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frackman S., Siegele D. A., Feiss M. A functional domain of bacteriophage lambda terminase for prohead binding. J Mol Biol. 1984 Dec 5;180(2):283–300. doi: 10.1016/s0022-2836(84)80005-4. [DOI] [PubMed] [Google Scholar]
  11. Frackman S., Siegele D. A., Feiss M. The terminase of bacteriophage lambda. Functional domains for cosB binding and multimer assembly. J Mol Biol. 1985 May 25;183(2):225–238. doi: 10.1016/0022-2836(85)90215-3. [DOI] [PubMed] [Google Scholar]
  12. Guo P. X., Erickson S., Anderson D. A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science. 1987 May 8;236(4802):690–694. doi: 10.1126/science.3107124. [DOI] [PubMed] [Google Scholar]
  13. Hohn B. DNA as substrate for packaging into bacteriophage lambda, in vitro. J Mol Biol. 1975 Oct 15;98(1):93–106. doi: 10.1016/s0022-2836(75)80103-3. [DOI] [PubMed] [Google Scholar]
  14. Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  16. Miller G., Feiss M. Sequence of the left end of phage 21 DNA. J Mol Biol. 1985 May 25;183(2):246–249. doi: 10.1016/0022-2836(85)90217-7. [DOI] [PubMed] [Google Scholar]
  17. Miwa T., Matsubara K. Lambda phage DNA sequences affecting the packaging process. Gene. 1983 Oct;24(2-3):199–206. doi: 10.1016/0378-1119(83)90080-x. [DOI] [PubMed] [Google Scholar]
  18. Murialdo H., Fife W. L., Becher A., Feiss M., Yochem J. Bacteriophage lambda DNA maturation. The functional relationships among the products of genes Nul, A and FI. J Mol Biol. 1981 Jan 15;145(2):375–404. doi: 10.1016/0022-2836(81)90211-4. [DOI] [PubMed] [Google Scholar]
  19. Murialdo H., Fife W. L. Synthesis of a trans-acting inhibitor of DNA maturation by prohead mutants of phage lambda. Genetics. 1987 Jan;115(1):3–10. doi: 10.1093/genetics/115.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murialdo H., Fife W. L. The maturation of coliphage lambda DNA in the absence of its packaging. Gene. 1984 Oct;30(1-3):183–194. doi: 10.1016/0378-1119(84)90119-7. [DOI] [PubMed] [Google Scholar]
  21. Murthy M. R., Reid T. J., 3rd, Sicignano A., Tanaka N., Rossmann M. G. Structure of beef liver catalase. J Mol Biol. 1981 Oct 25;152(2):465–499. doi: 10.1016/0022-2836(81)90254-0. [DOI] [PubMed] [Google Scholar]
  22. Pabo C. O., Sauer R. T. Protein-DNA recognition. Annu Rev Biochem. 1984;53:293–321. doi: 10.1146/annurev.bi.53.070184.001453. [DOI] [PubMed] [Google Scholar]
  23. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  24. Sanger F., Coulson A. R., Hong G. F., Hill D. F., Petersen G. B. Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol. 1982 Dec 25;162(4):729–773. doi: 10.1016/0022-2836(82)90546-0. [DOI] [PubMed] [Google Scholar]
  25. Siegele D. A., Frackman S., Sippy J., Momany T., Howard T. M., Tilly K., Georgopoulos C., Feiss M. The head genes of bacteriophage 21. Virology. 1983 Sep;129(2):484–489. doi: 10.1016/0042-6822(83)90187-3. [DOI] [PubMed] [Google Scholar]
  26. Thornton J. M., Sibanda B. L. Amino and carboxy-terminal regions in globular proteins. J Mol Biol. 1983 Jun 25;167(2):443–460. doi: 10.1016/s0022-2836(83)80344-1. [DOI] [PubMed] [Google Scholar]
  27. Weisberg R. A., Sternberg N., Gallay E. The nu1 gene of coliphage lambda. Virology. 1979 May;95(1):99–106. doi: 10.1016/0042-6822(79)90404-5. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES