Skip to main content
Genetics logoLink to Genetics
. 1988 Jul;119(3):485–490. doi: 10.1093/genetics/119.3.485

A Fourth Escherichia Coli Gene System with the Potential to Evolve β-Glucoside Utilization

L L Parker 1, B G Hall 1
PMCID: PMC1203433  PMID: 3042507

Abstract

Escherichia coli K12 is being used to study the potential for adaptive evolution that is present in the genome of a single organism. Wild-type E. coli K12 do not utilize any of the β-glucoside sugars arbutin, salicin or cellobiose. It has been shown that mutations at three cryptic loci allow utilization of these sugars. Mutations in the bgl operon allow inducible growth on arbutin and salicin while cel mutations allow constitutive utilization of cellobiose as well as arbutin and salicin. Mutations in a third cryptic locus, arbT, allow the transport of arbutin. A salicin(+) arbutin(+) cellobiose(+) mutant has been isolated from a strain which is deleted for the both the bgl and cel operons. Because the mutant utilized salicin and cellobiose as well as arbutin, it is unlikely that it is the result of a mutation in arbT. A second step mutant exhibited enhanced growth on salicin and a third step mutant showed better growth on cellobiose. A fourfold level of induction in response to arbutin and a twofold level of induction in response to salicin was observed when these mutants were assayed on the artificial substrate p-nitrophenyl-β-D-glucoside. Although growth on cellobiose minimal medium can be detected after prolonged periods of time, these strains are severely inhibited by cellobiose in liquid medium. This system has been cloned and does not hybridize to either bgl or cel specific probes. We have designated this gene system the sac locus. The sac locus is a fourth set of genes with the potential for evolving to provide β-glucoside utilization.

Full Text

The Full Text of this article is available as a PDF (604.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akroyd J., Barton B., Lund P., Maynard Smith S., Sultana K., Symonds N. Mapping and properties of the gam and sot genes of phage mu: their possible roles in recombination. Cold Spring Harb Symp Quant Biol. 1984;49:261–266. doi: 10.1101/sqb.1984.049.01.030. [DOI] [PubMed] [Google Scholar]
  2. Groisman E. A., Casadaban M. J. Mini-mu bacteriophage with plasmid replicons for in vivo cloning and lac gene fusing. J Bacteriol. 1986 Oct;168(1):357–364. doi: 10.1128/jb.168.1.357-364.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hall B. G., Betts P. W., Kricker M. Maintenance of the cellobiose utilization genes of Escherichia coli in a cryptic state. Mol Biol Evol. 1986 Sep;3(5):389–402. doi: 10.1093/oxfordjournals.molbev.a040406. [DOI] [PubMed] [Google Scholar]
  4. Hall B. G., Faunce W., 3rd Functional genes for cellobiose utilization in natural isolates of Escherichia coli. J Bacteriol. 1987 Jun;169(6):2713–2717. doi: 10.1128/jb.169.6.2713-2717.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hall B. G., Yokoyama S., Calhoun D. H. Role of cryptic genes in microbial evolution. Mol Biol Evol. 1983 Dec;1(1):109–124. doi: 10.1093/oxfordjournals.molbev.a040300. [DOI] [PubMed] [Google Scholar]
  6. Hashimoto-Gotoh T., Franklin F. C., Nordheim A., Timmis K. N. Specific-purpose plasmid cloning vectors. I. Low copy number, temperature-sensitive, mobilization-defective pSC101-derived containment vectors. Gene. 1981 Dec;16(1-3):227–235. doi: 10.1016/0378-1119(81)90079-2. [DOI] [PubMed] [Google Scholar]
  7. Kricker M., Hall B. G. Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12. Genetics. 1987 Mar;115(3):419–429. doi: 10.1093/genetics/115.3.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kricker M., Hall B. G. Directed evolution of cellobiose utilization in Escherichia coli K12. Mol Biol Evol. 1984 Feb;1(2):171–182. doi: 10.1093/oxfordjournals.molbev.a040310. [DOI] [PubMed] [Google Scholar]
  9. Mahadevan S., Reynolds A. E., Wright A. Positive and negative regulation of the bgl operon in Escherichia coli. J Bacteriol. 1987 Jun;169(6):2570–2578. doi: 10.1128/jb.169.6.2570-2578.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Prasad I., Schaefler S. Regulation of the beta-glucoside system in Escherchia coli K-12. J Bacteriol. 1974 Nov;120(2):638–650. doi: 10.1128/jb.120.2.638-650.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prasad I., Young B., Schaefler S. Genetic determination of the constitutive biosynthesis of phospho- -glucosidase A in Escherichia coli K-12. J Bacteriol. 1973 Jun;114(3):909–915. doi: 10.1128/jb.114.3.909-915.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reynolds A. E., Felton J., Wright A. Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature. 1981 Oct 22;293(5834):625–629. doi: 10.1038/293625a0. [DOI] [PubMed] [Google Scholar]
  13. Routman E., Miller R. D., Phillips-Conroy J., Hartl D. L. Antibiotic resistance and population structure in Escherichia coli from free-ranging African yellow baboons. Appl Environ Microbiol. 1985 Oct;50(4):749–754. doi: 10.1128/aem.50.4.749-754.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schnetz K., Toloczyki C., Rak B. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol. 1987 Jun;169(6):2579–2590. doi: 10.1128/jb.169.6.2579-2590.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES